& UNATRON min loop

ACDCHG
ANTISH
NEWLDC
MXTSET
oxXMQY
REALLD
VMULTS
WRTSHP
BCVYSH
DWNYEC
NEWYEC
RNDVEC
SHPACR
KBDWAL
CLIsS?
TALLY
CREAC
CCMH
YURM
TCREAC
TLOMHK
TYURH
ATRCY
MENL
- EWAT .
PsSC2
PSCR
RBILIY
RLOC
$TSH
THP2
NUMN
TLOC
TAIT
vou1
vcurt
PSHP
AL
CUR(
RAWY
TEMX
TVEL
SVE(L
RND1
THP3
STBO
RKD2
RND3
RND&
RANDS
MAXH
NuUMH
NUMH
MAXH

SETIP
ECU
EQuU
ECU
Ecu
EcU
ELu
ECU
ECQU
ECU
ECU
EQu
ECU
EQU
ECU
EQU
EQU
ECU
EQU
QU
EQU
EQU
ELU
ECU
EQU
ECU
EQU
1 141)
EQu
€qu
EQqU
EQU
ECQU
1{4Y;
ECU
QU
ECU
ECU
EQU
ECU
EQU
EQU
EQU
ECuy
ECu

EQU

$24
$2FA2
$3088
$1074
$3017
$2FES
$2FCH
$30F4
$2088
$2FS8
$2ECT
$2604
$2F15
$2EBS
$2871
$ZE8S
$2CC4
$2454
$2459
$2458
$2456
$2454
$2452
$24950
$2451
$2450
$2447
$2446
$2443
$2444
$243¢
$2431
$241D
$2441
$2440
$2430
$243¢C
$2433
$2432
$2434
$2439
$2433
12437
$2435
$742F
$2430
$2402
$242¢
$36420
$242¢
$2428
$2414
12428
$2429
$2415

N

S;t page "OD" o 324

Subroutine
Subroytine

 Subroutine

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroeutine
Subroutine
Subrautine
 of chain

for
for
for
for
for
for
for
for
for
for
for

adding another cheracter
erasing a char, from the

to the character list or "c=-1list",
screen at it's current location.
computing ¢char’s new loc from current loc and char’s vector.
moving cursor from shape data when writing shape.

cheacking to see if proposed new loc for char is already occupied.
trenslating screen loc into memory loc #anc bit set.
multiplyirg vector in . VOUT by two.

writing skape =~ shape addr in S$TSH, real loc in RLCC and RBIT.
building restore shape for » write=restore cperation,
gensrating vector from char to AIM loc on screen,

generating vector from char to players charzcter,

for generating & random vector,

for locking a shape”s addr from the shipe table.

tycles and waits for fire button to be pushed.

displays tre number of player’s characters left.

displays scoring,

rerctions in this round.

of computer hits in this round.

4 of player’s hits in this round,

Total number of chain retctions since start of game.

Tatal number of computer hits since start of game.

Total number of player’s kits since start of game.

Parameter controls strength of CURC®s attraction to AIM location.
of player’s characters left in game,

Walit counter to slow came down near the end of round,

LS8 of proposed screan location,

Screen coordinate, real value of a point on screen’
seolects pixel 1,2,3,0r & in » byte defined by RLOC.

Eit set’

= 128 « ¥ + X,

Actual byte leocation of 2 pixel on the screesn.

where addr
Work

of the start of a shlnl is stored after calling SHPADR.

storasge.

* Number of nsutrons released when & mine is exploded.
horking temporary for variable RLCC.

horking temporary for variable REIT,

LS8 of vector gensrated ty vector ganerating routines,
Vector generated by vector generzting routines.

Froposed Shape;

where # of nhapo to be ADDCHCed 1is stor-d.

hork storage.

Shape ¥ of

atom currently resctive,

non~zerc value here will cause CURC to run away from player®s char,
Temp storage usually usec for X register.

Temp vector storage.

Yamp vector storage.

horking storage.

Working storage.

* Addr of start of screen bordnrs layout.

working
Horking
working
horking
* Max #

storace,
storage.
storage.
stor2ge.
of holemakers to #ppear on

the screen this round.

Number of holamakars currently on the screen,
Number of mines currertly on the scraesn.
* Max # of mines that can appear on sScreen this rcund.

Unatron listing

phge:

01

Screen loc of where pleyer’s character starts,

MANST £QuU $2404 L]
SHP1ST EQU $240¢ ¢ Screen loc of where first atom starts
SETPTR EQU $2400 2 Addr of next set of ovearlaid drts.
MSCR ECU $2413 4. Screen loc of where mires appear,
MBEFH EQU $2419 4 Number of mines that must 2ppear before a hole appears. '
MINCh ECU $2416 » Relative chance of & mine appearing.
MINSPL EQU $c2417 * The shortest number of cycles 2 mine will walit before chasing player.
NINSPH EQU $2418 * The longest number of cycles a mine will wait before chasing player,
MINR EQU Sch4F Real memory addr of whers a mine will appear.
MING ECU $244E 2it set of where 2 mine sill appear.
GCn EQU $2412 * Relative chance of computer guns firing.
G2L EQU $2411 * Length ot shot originating from gun #2,
Gev ECQY $240F % Vector for shot originzting from gun #2.
G2s EQU $2400 * Screen loc of where gun #2 sppears.
G2R EQu $244C Real memory addr of shere gun ¥2 appears,
G628 ECH $2448 Bit set of where gun #2 zppears,
GiL - QU $240C # Length of shot originating from gun #1,
G1v EQy $24CA * Vector for shot origin2ting from gun &1,
61s ECU $2408 4 Screen loc of where gun ¥1 appears.
GIR ECU $2449 Real wmemory asddr of whers gun #1 appears.
G18 gQU 32448 Bit set of where gun A1 zppears,
CRG $2500 Kzin routine starts here,
START LDA #3524 value for direct page register.
TFR AsDP Set direct page register.
sTA 65478 “0" setting video pages
STA 65481 bk R
STA 65482 "Q“
STA 65485 bl hed
STA 65437 "y
SYA 45488 non :
STA §5472 0" setting video mode G3C.
STA 65474 nee
$TA 65477 e L ‘ -
LDA hess Yalue for video control register = gives black background and one of two color sets,
STA E5314 Poke the value into the video control register. Video parameters are not reset fros hers on in.
LCD #$220C Hard codec adcress of the first set of data to be overlaid at from 32400 to 32429
STD SETPTR Storse the $2200 so that the first set of overlaid data is redd starting from that point.
LOS #STFF Going to move the harcware stack out of the wbdy. No dates has been stored below $800.
LOA s Give the player four charscters to spend. This will be incremented to five 28 soon as score is put up.
STA MENL Store it.
LDOD #C laro out D register and use it to zero out point totals.
sTD TYURH Flayer’s (your) total nunrber of hits is assigned C.
510 TCOMH Computer’s total number c¢f hits is sssigned 0.
STD TCREAC Total number of chain resctions is assigned 0.
CLR YURH Clear pleayer’s hits for this reund,
CLR CREAC Clear number of chain rezctions for this round.
CLR CCMH Clerr pumber of computer’s hits for this round.
+
One time injtislizatior of the game has been completed.
* how will retrisve 329 bytes of overlaid dats starting »t SETPTR.
* Data is written from $2400 to $2428, Mote $24 has been set to %
* page laero in the direct page register, Data in the $29 bytes
* controls the difficulty of this round, screen layout etc.
. :
ISTART LDX SETPTR Start of » round: Get ader of next set of overlaid data. :
CLRA There sre 529 bytes (some unused) of overlaic date. The 2 register is going to be used to coumt to 329,

Unatron listing page: 02

Ley

FMT Lce

573
INCA
CMPA
BEQ
ERA

FE24CC
Xt
sY*

4329
Fr2
41

hhare overlaid data will go. The $29 bytes includes 211l parameters which change the game from round to roun
Get a byte of the date. :

Fut the byte down.

Increment the counter.

HFave all $29 bytes been transferred?

1 so, branch out of this loop.

A2 register still not egquil to $29, continue loop.

The character c=list sterts at 12547 and extencs to 13311,
Video ram *uns from 13312 teo 16383, In one big sweaep both
will be inltialized to zwros.

212547
#16383
€z01
F3 54
€200

TALLY
KEDWAI

This is the addr of the start of the character c=list. The display ram is adjacent to the c~list., Clear bot
Check to see if the end ¢f the video ram hag been reachec.

11 80, oxit loop. Character c-list and video ram are cleared,.’ L
Zero out bytes X points to next byte.

Continue clearing c=list and video ram.

Kow things are happening! Put up scoreboard.
hhat for fire button to be pushed.

The first 1tom &ncd the player are now set up. The screen locations
where both will start sre extracted from the dzta overlaid above
and translited into resl video ram locations and bit sets.

The 1st atom anc the player are adoesd to the character c-list,
Note the player’s charecter is done first, This assures the

L]

*

%

*

*

FM2 LDX

€200 CHMPX
BGE
CLR
BRA

®

€20 JSR
JSR

»

®

[]

®

*

*

"

*

* % % % % B N %

player will aluzys hold the first position in the c-list.

LED
$T0
JSR
LCA
5TA
JSR
LOD
ST0
JSR
LOA
57A
STA
JSR

For the rest of the round the computer guns will be firing and

mines will sppesr. The screen positions where these originate

MANST

PSCR
REALCE
#C6
PSHP
ADDCHE
SHP1ST
PSCR
REALCC
#18
PSHP
CuRC
ADDCHQ

Get playear’s starting screen locetion.

Store it 22 & proposesd screen locstion so REALCO can pick it up. .

Change screen lec into 2 video rem address and bit set {pixel number). These are returned to RBIT and RLCC.
This is the shape the pleyer will start out with. It looks like this; Vv .

Store it ss the proposed shape so ADDCHG can pick it up.

Add player to c¢~list w/skape = D&, screen loc = PSCRs res#l loc = RLOC, and bit set = RBIT,
Get scresn address of where 2tom #1 starts.

Store it as proposed screen location.

Translate into real coorcinates. . .

Shape #18 is the first atom in it’s normal (2s opposed to uobble) state.

Store it 2% proposed shape. o .

Store it as the current character ~ the one the player is chasing, the one that can fission,
Acdd the character to the c~list. -

are read from the overlsid detas section, translated into video

ram locatiens 2ard bit sets and stored so they can he fetched
whenever a mine {s to ke born or » gun is tc fire. Caleulating

this informatior once rt the beginning of # round saves time later.

Loo
51D
JSR
LCO
$YD
LCA
STA

MSCR
P5CR
REALCO
RLOC
MINR
RBIT
MINB

Get the address of the scroeen location where the mines are born.

Store it as the proposed screen location.

Translate the screen locztion into a video rem location and bit set,

Get the video ram locetion.

Store it here. It will stay here &nd nesd not be recalculated whenever a mine is bern.
Get the bit set just calculated.

Store it 50 it need not ke recalculated 2gain this round.

Ynatron listing page: 03

*
&
]

RESTAR

czCe2

B BB EEE RN

*
L]

XXX

xXx2

Xx3

LCD
§TD
JSR
LCco
$TD
LCa
5Ta
LGD
STO
JSR
Loo
57D
L0A
STA

CLR
ciRr
©LDA
ST

Ths round

CLR
LLx
cuex
BGT
CLR
BRA

has

G1S
PSCR
REALCO
RLCC
G1R
REIT
G18
GeS
FSLR
REALCC
RLCC
G2R
REITY
GzB

EwAL

NUMH
a7
ATRCY

Cat the scresn location where gun #1 appears,
Store #s proposed locaticn.

Translete the screen loc2tion into a video ram location znd bit set.

Get the video ram loczticn.

Store 1t so it need not te recalculated this round,
Get the bit set,

Store it so it nesd not Le recelculated.

Get the screen location shers gun #2 will appear.
Store it 28 proposed locztion so REALECO can get it.
Translate to real cocordirates,.

Cet the vidso ram address just gunorntod.

Store it s0 it need not Le recalculated.

Get the bit set.

Store it 20 it need not be recalculated.

Clear the end of round wsit countear so that the game runs &t normrl speed.
Clear the number of holemakers counter {bectuse thers are nons of course).
An attraction parameter, The lower the valuer the harder CURC will try to reach AIM; ths scresn location.
407 is a moderate values it is lowsred later so that the end of the round isn’t spent chasing 3 or & dats,

been set up. All zctions from here in tske place inside 2 given round.,

NUMM
#13312
¥16383
XaAx
Xt
Ce02

Every time the player is hit by a2 mine, or whenever a new rounc starts, mines are deleted from the c-list.

Load X register with the start of the video ram.
Check toc see &f the screen has heen cleared.,

It it has, branch out of loop.

Clear » byte of video rar and increment X.
Continue with the locp.

The border layout will now be drawn on the screen,

The layout is mzde up of two shapes, #1C8E and #110.

In the first tec screers shope K108 is a horizental brick and
#¥110 is » verticsl brick, The location STBD points to the start
of a Iiat of screen locstions where the shaces are to be drawn.
Shape §108 is drasn at 2ll addresses plucked from the list

until » negative adoress i3 encountered. Shape N110 is then drawn
at the next bunch of addresses plucked from the list until

8 second negative number is encountered,

LCaA
JSR
LCX
LoD
BLT
$TO
JSR
JSR
BRA
LCA
JSR
LCD
BLY
$TD
JSR
JSR
ERrA

»108
SHPADR
stT8o

s X+
3
PSCR
REALCO
WRTYSHP
Axz
A11¢C
SHOADR
2 X*4
XxX4
PSCR
REALCC
HATSHF
Xx3

The screen layout is made of two shapes.
Shape number in A,
The screen address
Increment X two hytes.
If the word loaded into [is < C, this signals that all
Store the bytes as 8 proposed screen address.

Translate ths sddress into resal coordinates.

hrite the shape pointed to by STSH in video ram 2t RLCC
Continue stepping througt tha table.

This is the second shepe in the screen layout.

The shape addr is looked up repetitively. Wasteful, but
Get the scresn addr of tra shepe to be put up. X points
1t the screen pddr losdec into [€ O (i.e. end of data)
Store the addr as proposed screan location.

Translete it into res]l ccorainates.

The screen 1s going to be cleared.

#108 is the first. The shape’s eddress must be looked up.
address of the shape is returned to 3TSh,

for eich piece of the layout (Eorders) is in 2 table pointed to by 3STBO.

Get two bytes from the terble.

cceurances (if any) of #1108 have been seen. Branch,

¢ith bit set RBIT,

time is chesp at this point.
to next shape.
exit loop,

write shrpe pointed to by STSH at RLOC with bit set RAIT,

Continue looping through layout table.

unatron listing page: 04

LR S AN 2N BN B J

*

The mines end crein rezction neutrons are deleted from the screen.
This saves the rlayer from repestedly baing zttacked by the same
mine or from losing toc many points to chairn reactions. If this

is the first pass through this section this round then there

wont be any minés or neutrons in the c¢c-list anyway. If is not

the first pass through, the playesr has just been hit by a mine.

XxXXé LCX
XXX5 CmMpx

8GE
LCa
CMPA
BEQ
CHPA
BEQ
BRA

XXX?7 CLR
XXX6 LEAX

™ % % % %R % % F RN RS

SRA

BI12547
13312
LCOoP
+X

Hé42
XXX7
#106
XXX7
XxxXe
X

.
XXXS

S5et X to point to start of c-list. Will loop through and delete mines and neutrans.
Check to see if at the end of the character c-list.

It s0 branch out of ttis loop to mazin LOOP.

Get the shepe number of the character from the c-list.

Check to see if its & neutron from chain reaction.

It it is, branch below where it*ll be deleted.

Check to see if character from c-iist is 2 mine.

It it is, branch helos where it°11 be daleted.

It 1s neither mine nor neutron. Branch below but skip the deletiorn part of the deal.
The mine or neutron is deleted.

The X register is increased by 9 to point to the next cherscter in the c~list.
Branch back up and continue locking for mines and neutrons.

This completes the scresen setup, The rest is ncrmal operation of the grwe,

This is the main locop of the game.

Firet wo will check the player‘s Joystick pots and decide

1) What vector to give the player’s character (49 possibilities).

2) what vector the player’s shot will take if fired.

3) What the player’s cherpcter will lock like based on the
direction it is moving.

The player can move at three speeds in » given direction., The speed

is determined by how displaced the joystick is frem the center.

Ths pliyer”s shot vector is also prepared. It is twice the player”s

vector when the player’s vectoer is mnon~zereo, Otherwise it is left

unnodifiaed,

oor JSR

LCX
CLR
LCA
5TA
LCco
sTO
$10
5TA
LOA
CHPR
BGT
LC8
§T8
CHPA
BGE
LoD
5To
LESLa
$10
ERA

CEADOA]
¥12547
$FF20
¥$BC
$FEF23
s
TVEC
YCUT
PSHP
$C158
818
c?c
(6
PSHP
#(6
uct
BSFFOC
TVEC

vour
c7t

Sample the joystick pots with ROM routine whose acddress is at $ACCA. _
Load the X register with the start of the c-list. Player’s cheracter ALWAYS occupies the first position.:
The d/fa converter is st $FF20. It has just baen used in sampling the joysticks and must be clearad tor soun
Load A with value for routine output from d/a converter to TV sound modulator.

Store 1t at this PIA.

The player’s vector #nd shape and shot vector are now going to be decided,

Clear tamporary vector location.

Clear vector locaticn.

Set proposed sheapa ¥ to C, values will be added to this to decide the final shape #.

Get vertical joytsick rezding. Check for upward movement first. There are three spoeds each direction.
Lp slowlys,medium or fzst = all less than or aegual to 18 on Joystick.

If greater thin 18, check for downward movement indicated by Joystick.

Shape for player‘s chzracter facing up.

Store as proposed shapa,

Joystick value of < é incicates quick upward movement. _

Value grester than or equal = check for medium speed. branch

It is uwpuard quickly. vector = $FFOD = =256,

Store as temporary vector for plaver’s cheractar,

Vector tor shot aluways teice player’s chrracter speed. Multiply by tuwo.

Store as vector for playar’s shot,

Eranch to check horizcntzl movemant.

Unatron listing page: 05

uo1

uoz

€70

uo3

LC4

7

ceen
3GE
[N]
51D
CLRA
5YD
ARA
LCD -
ST1D
ING
LCA
ANDA
BEQ
LoD
S1D
BRA
cuPa
BLE
LDB
518
CMPh
8LE
LCD
STD
LSLA
$TD
BRA
CHPA
BLT
+CD
ST1D
LGD
STD
BRA
LCD
STD
IKC
LCa
ANDA
3£Q
LCD
S$TD
LCA
CMPi
BGE
INC
INC
CMPL
BGE
100
suap
STOD
LED
sLap

ERA

2w

"
Fedium speed indicated by » value less then 12 and greater than 5,
If value is greater than or scusl to 12 slow sSpevc must bs called for, Branch.
Vector for medium speed upward = FF80 = =128,
Store »s temporary vector for player”’s character,
Prepering vector for shot = twice player’s speed, Clearing B makes value = SFF00 = -256.
Store as vector for player’s shot. : '
Eranch to check for herizontal motion.
Slow speec.This will te vector for shot = =128,
Store as vector for plaver®s shot.
This location used as an odd/even counter for slow player vectors.
Every other cycle plzyer will move upsard. Effectively half speed. _
It non~zero result from this give player vector of =128, else lesve = 0,
Result was zero, branch.
Vector squal to =128,)
Stors as temporary vector for player’s character.
Go do horizantal component.
11 ended up heres thers wes no upusrd movement given to pleyer., Check for downward.
It Joystick value < 45, no downwird movement celled for, G¢ check for horizontal.
Thers 1is downuard movement. 12 is shape # for player®s character facing downwsard,

Store the 12 as proposed shape number,

2 value greater than 57 calls for fast downwerd movement,
It valus s less than or sgual, branch to check for medium spesd.
Vector for fast downwsrd movement.

Stors as temporary vector for player’s cheracter,
Pultiply by tuwo so thet shot moves at 512.

Store shot’s vector 25 vector,

Branch to check for horizontel movement.

Check for medium speed.

A value less than 51 calls for slow speed. Branch.

Vector for medium speed.

Store as temporary vector for player’s chzracter.

“vector for shot = teice player’s speasd.

S5tore as vector for player’s shot.

Branch to check for horizontal movement.

S5low speecv. 123 is vector for shot.

Store as vector for player’s shot.

Increment odd/even counter.,

Get odd/even counter, .
Aon=zero result here snd charscter moves down with vector of 128, elste no movemant dounward.
If result ts 2eros, go chack for horizentsl movement. ;
Result not = C. Give player vector for dowxnward movement.

Store as vector for player’s character, .

Rorizontal movement section. Get result for jJoystick sample.

& valus greater than 1€ indicates no Ieftuard movement.

It no leftward movemant, branch to check for rightward mevemant,

Adding two to player shape, If there wes no vertical movemant, PSHP will saual 2.

If there was upward movement, PSHP will=8, If downward PSHF will=14. Takes care of dizgonal shapes.
Check to see if fast lefteuord movement is called for. :

hos then check for mediur speed.

Fast., Get player’s vector generated so far.

Add tuo pixel leftuward displacemant.

Store »s temporary vector for pleyer”s character,

Get player’s shot vector generated se¢ far,)

Give twice player®s leftuard displacement. ¢

Store as vecter for pleoyer“s shot.

Exit player vector generzting section,

Uratron listing pace: 08

uos CrPh H12 Check for medium spoed;

EGT ucé Mos, check for slow speesd,.
LCOD TVEC Vedium spesd. Getplayar®s vector generated so far.
SLBD #01% Give one pixel leftward displacememt.
$TD TVECL Store zs temporaray vecter for player’s character.
LoD vCur Get player’s shot vactor generated so far.
SUBO (e Give twice plaver’s leftuard displacement.
STD ycurt $tore zs vector for player®s shot.
8RA c?3 Exit vector genarating section,
L0é LCO veur If get hers, slow speed is called for. Get shot vactor peviously calculated.
susp #C1 Give leftuard displacemant.
STD veur Store s vector for player’s shot.
INC RND2 Increament horizontal cdd/even counter.
LOA RAD2 Get odd/even counter.
ANDA #C1 It result here = 0, no mecvement this cycle.
8EQ c73 Eranch out of vector generating section i{f result = 0.
LCD TVEC Get player’s vector genarated so far.
SUBD #01 Give leftuard displacement.
STD TVEC Store as vector for plaver’s character.
BRA £73 Exit vector generating section. :

L7 CHMPA Hé5 If get heres no leftward movement callad for ., check for rightward mevement. VYalue < 45 =no horiz movement.
BLE c?3 Ko rightward movement called for. Sranch and axit vector genereting section.
LCB #L4 Stape number for player’s character facing right.

ACDB PSHP Add to shepe alresady stored away. .
ST8 PSHP Store as proposed shape. Compaosite of 04 and old shape gives shape facing correct direction.
CMPA ®57 Check for fast rightward motion.
BLE uc? Value less than 58, no f#st movement. Branch t¢ check for medium speed.
LED TVEC Fast rightward movement. Get player’s vector already generzted,
ADDD #C2 bud two pixel rightward displecemoent.
STD TVEC Store #s temporary vector for pleyer’s character.
LCD vouT Get player’s shot vector generated so far.
ARDD #C4& Add tuwice player’s displacemant.
STD YeuT Store 2s vector for player’s shot,
BRA c73 Exit vector calculating saection.
uo? CMPA #51 Check for medium rightward speed. Value < 51 implies medium slow speed.
gLT uos If less than 51, branch #nd do slow spesd.
LED TVEC Get player’s vector calculated previously.
A00D #L1 Give slow rightward displacement.
$T1D TVEC Store as temporary vector for pleyer’s character.
LCD yCeuT Gat player’s shot vector calculated betfore.
A0DD #02 Give twice player’s rightward displacement.
STD YCouT Store as vector for player’s shot,
BRaA €73 Exit vector calculating section. : _
uoa LoD ~ yeur 5low speed. Get player” s shot vector praviously celculated.
ADDD AC1 Add rightiard displacement.
STD veouT Store a3 vector. .
INC RND2 Increment horizontal ocdd/even counter.
LDa RND2 Gat ocddfeven counter,
ANDA #01 It result from this = zero, no movement this cycla,
BEQ c?73 Result = L, branch.
LCD TVEC Result not = 0. Get player’s vector calculated so far.
ATDD #C1 Acd rightward displacement.
STD TVEC Store 2s temporary vector for pleyer’s character,
c73 LLCD TVEC Gat player’s vector crlcilated above.
BEQ LLS I1f the joystick was in tre middle, the vector=0, player‘s cheracter does not move., Branche
5TO 12554 Vector not = 0. Store in c-list where player’s vector is alueys storeda (7,X).

Unatreon listing page: 07

LLD
5TO
LGa
J5R
JSR
JSR
JSR
LCA
JSR
JSR
BEQ
JSR
Lco
§10
JSR
JSR
J5R
BEQ
LCD
STD
LCa
STA
LCA
JSR
JSR

. BRA
czs JSe
LDA
STa

- LCD
$TD
Loo
sTD
LLCA
STA
BRA
LLS LCA

J5R -

Loo
5TO
LCa
STA
J5R

*

veourT
SVEC
X
ShPADR
ANTISH
NEWLOC
REALCC
PSHP
SFPADR
QKMOV
czs
RADVEC
viurt
12554
NEWLOC
REALCO
CKMOV
Ces
12551
RLOC
12553
RAIT
12547
SEPADR
WETSHP

-SHOT

WRTSHP
PSHP
12547
PSCR
12548
RLOC
12551
REIT
12553
SHOT
12547
SHPADR
12551
RLOC
12553
RERIT
NRTSHP

Get player’s shot vector calculated sbove. Can be sure vector not = 0 because player’s vector not = C,
Store shot vector hers. hote: if player’s vector had been zero., shot vector wouldn’t be modified,

Gat shape used for player in the last round.

Look up the shape in the ‘shape table.

Erese the shape from the screen.

Compute & new proposed location from the player®s vector and old screen location.

Translate the proposed location into real coordinztes.

Get shape number determired for player when vector was crleulated.

Look up the shape’s starting address.

Chack to see if the new shape will fit at the new screen locetion,

It the new shape will fit, return code = 0, branch, '

hill not fit at the new loc. Generate random vector, Try to make player bounce off of whatever
Gat the vector just generateo,

Store in c-list #t location where player”s vector is.

Genarate new proposed screen ioc from the new vector.

Translate into real coordinates,

Check to see 11 the new location is unoccupied.

If the new location is free, it is ok to move. Branch,

Still cant move. Give up. Get player’s real screen locatior (4,X).

Store as resl screen 1oc so we can erite the old shape back.

Geot player®s ola bit set (6,X),

Stores as bit set 50 we c&n write the old shape back.

Get shape number for player’s previous character.(sX)

Look up the shapes adcress.] §
hrite the old shape bsck. We have given up on the player this round. Cannot move him Cor herl) .
Leave this section., Go check fire butten.

1f get here, was able to write new shape. Write the shape.

Get the number of the shaps just written.

Store in c<list »s player’s shape (,X}.

Get the new screen location generated and written on.

Store in c=1list as player®s screen location (1.,%).

Get real value of locztion just written to,

Store in c=list as pleyor“s real location (4.,)X).

Gat bit set of locaticn just sritten to.

Store in c~list as playsr®s bit set (6,X).

Information recorded with player®s character. Branch to check fire button.

If get hers, joystick eas in the middle. Shape not moved, but must reerite in case 8 holemsker
Lock up player’s old character shape address, :

Cat player’s real screen loc so ve con re-writs the shape.

- Store B33 real location.

Get player’s 0ld bit set.
Store as hit set.
krite player’s old shape back,

* The Joystick button will be checked to ses if 2 shot is to be fired

*
SHOT LCA
CMPA
BEQ
CMPL
BEQ
157
ENE
INC
LtD
ST0

65280
iS55
C01
#1127
cc
RNDS
Lim
RAOS
SYEC
veur

Fire button is memery mapped. Razd value.

It value = 25%, button not pushed. :

Eranch if not pushed.

1f value = 127, tirs hutton not pushed.

Branched it not pushec,

This 1s thke button pushed last cycle flag. If it is true, button uwas already pushad.
Eranch if button &slrezdy pushaed.

et button pushed last cycle flag.

Get vector calcyleated for player’s shot.

Store as vector,

is in the

zte it.

Unetron listing page: 08

LoD 12548 Get player’s screen lccation. Shot must from originate from where player®s character is,

STD PSCR Store &5 proposed screen location., REIT and RLOC still hold player’s location.
LoA #4648 Player’s shot first shzps number = 4B. Sheoe number changes ss shot proteaeds,
STA PSHP Store as proposed shape.
LDA #31 This is a counter for shct shape changes. Every aight cycles shape of player®s shot will change.
5TA THPY Store in space normally reserved for usbhble byte. :
JSR ADDCHQ Add the player’s shot to the character c~list.
- BRA LEM Branch arcund line bhelow.
Qo1 CLR RNDS This 1ine marely resets the button pushed last round flag. Only get haere if button was not pushed,
w
* This naext section checks to see if 2 holemaker can be 2dded
* to the c-list. The cacision is basad on the nurher of mines
* alrecdy in the c~list end the number of holamakers sllowed
* vs the number mlready in the c-list.
*
LLM LCA RAD1 Get "randon™ number,
ANDA AL MM Fake the number <= than the number of mines on the screan.
CHPA MEEFH Check against the number of mines neccesary befors a holemaker can appear.
BLT T1 If the result is less, trere will e no holemakaers born this round. Branch.
LLA NUMHM Get the number ot holemakers already living.
CMPA "MAXH Compare it with the maxirum number allowed,
BEQ 11 If the maximum number of holemdkars allowed already exit, branch.
LDA #102 Shape number for & holemzker.
STA PSHP Stors as proposed shape, :
LCD 12557 This is the screen location of the second charactar in the c=list.
STD PSCR 3tors as proposed screen location, Chose secend charescter”’s loc only because holemaker must start somewhere
LLD 12560 Get second cheracter’s real memory location. ’
$YD RLOC Store as real locastion. s
LEA 12542 Gat second chiracter’s bit set.
5TA RRIT Store 2s pit set.
JSR RNDYEC Gat & rafdom vector, ;
JSR ADDCHG Add the holemaker to the character c~list.
INC NUMH Increnent the holemaker count for this round. Done adding holemaker,
* : .
* In this section a “random” number is generated ano checked
* ngainst & parameter {MINCH) to see if 2 mine c2n be addad
* to the c~list. ho more than the maximunm number allowed can
* be added.
*
TZ1 LDA RND1 Adding mines to the c~1list. Get random number.
CR& RKD4 Cr with 2 second randcm rumber,
CMPA MINCH Compare with the chance c¢f getting a mine this round.
BHI Lyl It the nunmber 1s higher than MINCH, don’t add 2 mines branch.
LCA MMM Gaet number of mines presently alive on the scroen,
CrpPa MAaXM Compare with the maximum allouwed this round.
BEQ CHARS 1t we have rezched the maximum number of mines allowed, don’t add & mines branch,
Loa #106 Character number for a mine. :
stTa PSHP Store as propcsed shape.
100 MSCR Get starting screen lccation for mines this round.
STD PSCR Store as proposed screen location,
LCD MINR Gat roal video ram location for mine calculsted wken sotting up the round,
ST RLOC Store 2s # real locaticn.
LDaA MINS Cet bit set for mine calculsted whan stting up this rounc.
5Ta RAIT $tore as tit set,
tLCa HCt hobbla byta for mines cortrol whether the mine is sctively ctesing the player or bouncing (ses mine section
STA TrP1 Store as proposed wobble byte,

Unatron listing page: 09

JIR ADDCHE add {ho mine to the charpctor c-list,

INC NL MM Increment the number of nmines counter.
LOA #3FF Going to maka & noise hers to tall of the birth of a mins.
TiG CECA Noise is » sam tooth wave of 255 decreasing periods.
BEQ CHARS 1f A is = Oo done with ncise, branch,
TFR A,B hoisa,
TIR st8 $FF20 Store noise to A/D converter.
CECH Noise,
BNE TIR Kore noiss.
: BRA T1Q Fore noise.
*
* VYalues zre tested here to see if the computer cuns will fire.
* .
Lvl CHPA - GCH kere we see 1f guns fire. If mine was bﬂfﬁf this was skipped. Compare contents of & with gun chance .
BHI ChARS If A was higher, no guns are fired, branck.
Lo G1$ Get gun #1’s screen location for this round,
S$1D PSCR Store 2% screen location,
Loo GIR Get gun #1°s video rar loc as calculated uhen setting up this round,
$T10 RLOC Store »s real loc,
LDA 613 Gat gun 1#°s bit set ss calculated when setting up this round.
514 rREIT Store as bit set.
L0 G1v Get gur #1°3 vector for this round.
$10 veurT Store ¥$ vector,
LDA GiL Got length of gun #1°s shot for this round.
57a TrP1 Store ¥ wobble byte. For guns,; uobble byte is decremented to zero and then gun’s shot deleted from c-list,
LDA "sé Sheape number for computer gun shot.
STa PIHP Store as proposed shage,
JSR ACDCHG Add shot to the charscter c~list.)
- LOA #1346 Shape number for the gun itself. Going to write it on the screen whenever gun fires,
JSR SHPACR Look up the shapes asddress.
JSR - WRYSHPF hrite the shape.
LCoD GES Get gun #2°s screen location.
$10 PSCR Store #s screen location.
-LCD GeR Get gun #2°s video ram loc as calculated in set up of round.
S1D RLOC Store as real location.
LDA GZB Get gun ¥#2's bit set #s calculsted in set up of round.
STA RBIT Store as bit set.
LED G2v Get gun #2°s vecter,
ST VYCUT - Store as vector.
Loa GEL Get gun ¥2°s shot length,
StA TePq Store »s wobbls byte.
LO& #5546 - Computer shot shepe numbar.
STA PSHP Store as proposed shape.]
JSR ADDCHC Add computer shot to the c-1ist.
Lca N13a Shape number for gun #2,
JSR SHPADR Look up shape address,
JSR RETSHP write the gun,
" s
* The loop below is entered once for every location in the c=list,
* Way up rbove the X register was set to 12547, the player’s
% location in the c-list. The rast of the cheracters ares now checked.
* By looping through nine bytes at & time sach c-list entry is
* sanepled., If the entry (shape number) is zero tre slot ts
* considered emcty. Other numbers correspona to other cheracters:
~ ENTRY = CUR(sProcess current atom
* ENTRY = #1106 sProcess mine

Unatron listing page: 10

= ENTRY = #102 iProcess holemaker
~ ERTRY > #42 : sProcess neutron
& ALL ELSE : iProcess atom
® Each discriminating step occurs in the order given.
4
CHARS LEAX 9. Add nine to X so we will be addressing the hext charactar,
Cmprx #13312 Chetk to sae if the énd cf the c=-list has been resched.
LBGE LOCP If it hass branch way hack up to LOOP, :
LCA EWwAlL Get the ond of round weit counter.
BEQ NZZ It 1t equals C (which it does till the lest stoms are up) branch.
N32 LECA Cecrement wait value.
BNE h32 1f not done eaitings branch back up.)
NZ21 LCA RMND& Gonna make the sound of the explosions if there h#s been cne recently. RND4 is sat to $FF decrmntd for scun
BEQ ice If RND4 = 0 » don’t make any noiser branch.
ANGA #C2 Golng to make sound for two cycles every second cycle. Check to see if 1ts time.
BEQ QCX hor not this cycles but kEranch to decrement. counter anyway,
LoA RAD1 Get that other random nurber.
EQRA . 2sX Co an XOR with Znd byte cf character’s screen loc. Trying to make & psuedo randon noise.
ANDA RNDS Add more contfusion to tha byte,. . :
CCMA 4dd more confusion to the byte.
cox CEC KAD4 Cecrement RND4 so that the sound eventually cdies out.
gosg STA $FF20 Store to the A/D converter, The zeros every two rounds are stored here toa so the sound is dynamic.
LDA X Cone with the nolse. Get the character numbser from the c~list.
BEQ CHARS A character number of zerc means no character, branch up.
CMPA CURC Compare ‘the character number with the current ztom.
BEQ CHASED 1f the chzracter is CURC, branch to process CURC.
CHPa R106 Is the cherscter & mine?
LBEQ MINE It it is, branch to process » mine,
CMPa #102 Is the character a holemzker?
LBEC HWCLE If it is, brench to process holeraker.
CuPa Hé2 Al)l characters greater than or equal to 42 are shots of some sort at this point. Branch to do neutrons,
L BGE NEUT 8ranch if neutrons.,
BRA ci0 The only characters not selected yet are bumbling, bothersome atams. Branch to process them.

*
* Next section for current atom. Lepending on random samples
* current atom (CUR() may run away from player’s character

* (it shots heve keen fired) or head for locetion betwesn

* computer guns (AIM) or possibly Just continue aith present
*

L}

c

vector,.

HASED TST RaWY = If get hére, are mrocessing current atom. Check run-asay byte. (Incremented below by neutrons,)
ALE ve1 1t not greater than zeros branch. .
DEC RAWY Cecrement run ruway byte so it“ll eventually get to zera and CURC can stop running,
CEC RAWY Ceacrenment again. ' '
LOA RNDT Get the random number.
ANDA e?e 11 result from this is nct zero, will skip running away this time and make CURC head for AIM location.
BNE YE£1 Skip making CURC run zuway 1f not = (.
JSR MEWVEC Ganerate vector towardas player.
LEO #e Clean out D register. Going to make a vector away from player by subtracting vector from .
Suad VCUT Subtract generated vector. .
$10 74X Store as this CURC’s wvector,
BRA cip Branch to process movement,

V&1 INC RADY In the section it is cetermined it CURC character we are processing will head for AIM.
LOA FnD1 Aumber RNDT has been modifiea by line 2bove. Get random numhar, :
ANDA ATRCTY Bound number by the attrzction pzrameter.
BNE 10 1t the result was not 2ero, branch to process character®s movement.

Unatron listing page: 11

(a2 B I B BN

30

3

€32

C34

€35
€354

c33

JSR
LoD
$TD

LDA
eEQ
L3LA
ANDA
ACDA
JSR
J5R
JSR
JSR
LEA
BEQ
DECA
LsSLA
ANDA
ACDA
JER
J5R
aEQ
JSR
LLO
510
JSR
JSR
JSR
BEQ

LoD

STD
LDA
$TA
LDA
8EQ
LSLA
ANDA
ADDA
J5R
ISR
LOA
CRA
STA

LaRA

18T
ENE
INC
LGA
ORA
57a
157
BEQ

DwNVEC
ycurt
7.X

I.X
€31

e

R
SHPADR
ANTISH
NEWLOC
REALCO
I
c32

hee

s X
S+#PADR
CKMCY
£13
RNDVEC
ycurt
T+X%
MNEWLOL
REALCC
OKMQY
c1s
92
RLOC

['S
RBIT
/X
C34

- #C2

X
ShPADR
MRTSHP
X

i,X
3%
CHARS
Iex
CI5aA

- 3.X

+ 1

L
3.x%
3.X
C1é

4
Gensrzte uoctur"touaro: AIM location.
Get vector gesrerated,
Store as CURC character®s vector.

Both CURC snd inective atoms are processed the same in this
section, Atom is moved sccording to vector if possible. wabbling
effect is taken care of. :

Fare the movement of 2l)l atoms is processed, Get sobble byte for character from c-list.

1f wobble byte = (there is no wobble, don"t bother processing the wobble, branch,.

Pultiply the wobble by two. This will he clear in a second.

Clean out all bits except the second. Ths result of this is added to the shape # to get # of wobble.

The antishaps written will correspond to either the wobble or normal depending on which was written lmst.
Look up the shape’s address,

hrite the antishape to ersse it from the scresn.

Generate new screen loc from shapes old loc and vector.

Translate into real coordinates, _ _ :

Get wobble byte again. Geing to check whether wobble or normel shzpe for this char {s to be written next.
1t wobble byte = C, next shepe will be normal by default, '
Cecrement the value for the wobble.

Pultiply by teo.

Remove &all but second bit.

Add result to shape numbar to get wobble number it bit wes set or keep shape numbsr 1f not,
Look up the shape’s address.

Check to see if the shape can be sritten at the location pcinted to by RLOC and RBIT.
If 4t can, branch, .

If get here, shaps wouldn”t fit 8t new location. Generate randem vector.

Get vector generated. .

Store in ¢-1list as cheracter’s vector.

senerats & new location from new vector #nd character’s old postian.

Translate into real coorcinates.

Check to see if nesw location is clear for character to move into.

If it fs,branch.

It wasn’t, better to give up this cycle. Get shape’s old resl locations

Store 28 real loc.

Get shape®s old bit set.

Store #s bit set.)

Get shape’s wobble byte (note it wes never modified). i

11 wobble byte = C , ther without a doubt character was in it’s normal state before.
wobble byte not = C. ¥ultiply by two.

Clear all but second bit. # g

Add character’s normel state shace number.

Look up resulting shape’s address, ‘

Write the old shepe of the character back where we found it,

he woren’t able so move so apparently shape hit something. Reset uwobbls to shape wobbles for a while.

Result of this op is #ssigned to the char’s wobble byte. Note bit 1 is preserved, thus is old wobhle state.
Store in c~list as character’s wobhle byte.

811 done with imohle ztom, brench to process more characters.

we 30t here, we were able to move atom on the second try., Get chzractar’s wobble byte.

If 1t was alroeady wobbling, skip next instruction, else nust set wobbling w/normal state being first.

Mow the char’s wobble byte = 1. Has to be odd so that sfter decrmnting helows, correct antishp used next cy¢
Get shape numher. This’ll be or“d with wobble byte and stored as wobble byte.

Cr with uwobble byte. Kote: can always be sure shape number is even.

Store result as wobble byte,

Get here, handle movement of all stoms whether thay bounced or not. Chack wobble byte.
11 wobble = O branch.

Unatron listing prge: 12

CEC - 3.X have done everything withk o decremented value of wobble byte. Timre to decrement the byte itself,

C36 JSR WRTSHP Finally! wWrite the shzpe (normal or wobbla) determined for the a2tom.
Lep PSCR Get the screen loc used.
STD 1,X Store in c~list as charnctor’s screen location,
LOD RLOC Get real video ram locztion used.
STD 4aX Store in c~list as cheracter’s videc ram location.
LCA RBIT Got bit set used to write the shepe.
STA S.% Store in c-list as character’s bit seot.
L3RA CHARS All done with atoms branch to get 2nother character to work on.
*
* Neutrons and shots of 211 types are processed in the next section,
* If a2 shot hits something control is transferrec to the BOME section,
* E
NEUT STA $FF20 It get here, character is either computer shots, player shot or chain reaction shot. Make a noise.
5TA TMP3 Store the character (shage) number here. Will need it later 23 X register may be modified,
CMPA rS6é Check to see if it°s » ccomputer shot.
BEQ Nvi I1f it is, branch around stuff halow. For ona, don’t want computer shots causing atoms to run away,
CMP L #112 THis is the number of chrracter relessed when a mine explodes. It is temporarily inert.
BEQ CCMn If shot=112 bpranch below. It is explained there.
INC RAWY Player’s shots and chein reactions increment the RUN AWAY pargmeter,
hv1 JSR SHPAOR For player’s shots and chain reactions look up the old shape’s address.
JSR ANTISH Erase the shape.
DEC 3.x Cac wobble byte. If rosult=0, character is deletec.
BNE €701 Aot = 0, branch,
CLR X Celote character from c-list.
LBRA CRARS Character deleteds go do another. ; d :
€701 LCa X The player’s shot change every 7 cycles. Will see if dealing w/ Player®s shot, if so=is it time to change?
CMPA Hag Check against first shape # of plaver”s shot.)
T BLT c70x - Less than, it must be » chain resction neutron, shape = 42 branch,
CMPA neé Check against computer’s shot K.
BEQ C70x Shot 1s computer’s shot, branch, . :)
Lca #C3 Have isolated shot to be one of the eight forms of the player’s shot. 03 is a mask,
ANDA 3% Every 4th cycle the result=0. When true, time to change pliyer’s shot character.
BNE c70X fFesult not = 0, laave Pleyer®s shaps # the same this cycle.
LA PR Result=0, time to change player’s shot’s shape. Get present shape #.
ACDA ¥06 Add & to get next shape #. Note: antibomb 1is at X+2 and bomb is 2t X+4.
STA % Store as player®s shot nou shape #.
JSR SHPADR Look up address of new sFape.
C70x JSR KEWLOC Character not deleted., Ctlculate neuw screen location.
JSR REALCC Translate into resl coorcinates. :
JSR GKMOY Check to see 1if it is clear to move into the new location,
8KE BCHMB It 1t isn’t, blow upl Branch,
JSR WETSHP Wwrite the shzpe at the naw locatian,
LoD PSCR Get screen loc used,
5T " 1eX Store in c-list as character’s scroen loc.
LDD RLOC Get real loc used.
S1D bsX Storé in c~list #s character’s real loc,
LDa RRIT Get bit set usea, _
5Ta GaX Store in c-list as chrracter’s bit set,
LBRA CHARS Eranch to process new character,
- .
* Exploding mines splinter into computer shotss, however the
* shots zre inert for a short time so that they may disperse
* from the point ¢f the explosion, If this were rot sc¢, most
* of the shots would kumg intc ore snother anc #xplode right
* there. The tollawing section decices if it is time for the

Unatron listing page: 13

+ ghots to become active.

*
COMM CEC 3.% bhen # mine explodes, » temp inert shape is used so shots can disperse w/out blowing up,
AEQ £2Q It wobble Dyte jJust decrekentec=0., it is time to replace inert shots s/computer shots.
JSR SHPABR 1t wss not time, look up inert shots address in teble.
JSR - ANTISH Erase the shrpe.
JSR NEWLCC Calculate the new screen location from the old snd the char®s vector,
JSR REALCO Translate into real coorcinates.
JSR CKMGY Chack to sees if new loc is claar,
LBNE CRARS It its not, don’t bother restoring shape at old loc. Just branch.
BRA c70x It is ok, branch up and erite the shape.
c2Q LoA #96 Cet here, time to change inert shot into zn active ONe 3¢ computer can scorg,
STA o $tore new shape # over old one at charscter’s plrce in the c-list.
LDA N50 This 50 will be storea as wobble byte. Shot will last 50 cycles if it doesn’t hit something,
ST 3. Store a3 character’s wobhle byte.
LaRA CHARS Go process anothar cheracter,
*
* The next section takes csre of the explosion whkich occurs when)
* some kind of shot hits an okject on the screen. The thape number
* for the shot is used tc determine shat kind of explosion
®* ta use. Ssy the shot or nautron’s shape number is G, The overiay
% shape number is then Q+2 and the explosion shape nunmber is
* Qt4. The overlay shane is resd from the screens, the sxplosion
* written and the overlay restoraesd. _
* This section also contains the code which decices £f an atonm
* has been fissioned or 2 mine destroyed. :
+* g i
BOMB CLR rX The shot hit something! Celete it from the charmcter c-list.
$TX TEMX - Going to need the X register, store it away temporarily. : }
BRA CCAR Sranch here in case OCAR section changed to subroutine. horthless here though. Need 1 apologize?.
DRET - LCA Tep3 Get the character number of the shot that caused the explosion, '
ADDA #Cé "~ bdd 04 to get the shape number of the explosion,
JSR SHPADR Get the address of the skape.
JSR WETSHP write the shagpe.
LCA Trp3 Get the shot number agair.
ACDA KC2 fod 02 to get the shape number for the overlay built in BOVYSH.
JSR SFPACR Look up the address. _
458 - WRTSHP write the overlsy shage te restors the screen.
LDA %255 Gonna generate a “pop’. This is for sound.
STA $FF20 Store to the D/A converter. : :
ST RND& Store as random number, This is deceremsnted to meke the explosion sound die away.
LCA #0 ¥Yore noise.
" 5Ta $FF20 Store to the D/A converter
LCA ¥128 Pore noise.
STA $FF20 Stare to the D/A converter.
LOA #2S5 Pore noise. '
STA $FF20 Store to the D/A convaerter,
Lox "~ TENAX Get the volue of the X register stora previously.
: LBRA ChARS Branch to process another character, y ‘ :
DCAR LLo TLOC ~We will now see if anyone is to be injured in the explosion. Get video loc where shot struck,
susp #13312 Start translating into a screen locatien. Subtract the start of video ram,
LSLA Multiply. There are four pixels per byte, We will multiply by & and add the b1t set to get the screen loc.
LSLE Multply LS8,
ecc FF1 1f no carry Qenerstec, skip naext instruction, Doirng 1¢é bit arithretic.
INCA Propagats carry into MS3,
FF1 LSLA Fultiply by tuo again,

Unatran listing page: 14

Fr2

FF3

FF4

FFS

FF6

FF7

FF8

LSLE
BCL
INCA
ACDB
sTD
LCX
LOA
LGB
LEAX
CHMPX
LBGE
CHMPB
BEQ
CHMPA
BEQ
BRA
LOD
SusD
STE
LSLA
LSiLB
BCC
INCA
TSTA
BGT

NEGA
CMPA

BGT
LCA
TFR
ANDA
ANDB
BEQ
CRA
MNEGA
CHPA
i
LCA
CMPA
8KE
JSR
JSR
CLR
DEC
LCA
STA
LDA
STA
Leo
$T2
Loo
STO
LCA
STA
LCA
STA

FF2

TBIT

PSCR

B12547
CLRC
#1056
9,%
#13312
cs2

X

FFS
s X

FFS
FF4&
1,X

‘PSCR

RADA

FES

FF?

#C04
FF3
RAD4&
Ar,B
H$TF
#84C
FF8
#$80

k(3
FF3

X
¥106
Ti9
SHPACR
ANTISH

ANUMM
MUMN
RMD4
#1112
PSHP .
1,X
PSCR
4%
RLOC
6sX
RRIT

T¥P1

Multiply LSB,. ;

Ao carry then skip next instruction.

Propagate carry into MSB,

Acd bit set from point of collision {nto LSB. Now
Store as screen loc.

Load X with start of character c-~list.

Load A with CURL”s number for comparison below.
Load B8 with the character number for a mine.

Peke X point to the next character in the c-list.
Are we at the end of the c~1list?

If sos neither CURC nor MINE was involved in the explosien, Branch teo finish up this section.
Cneck to sea 4if character in c-list is & mine.

1t it is, branch to see if it was close eénough to the point of impact to be blouwn up.

dot & ming, check to see character in c-list is CURC.

I1 it tss check to see if it is closa enough to the point of impect to be blown up« Branch,
14 i3 neither. &4 and 8 still hold values for CURC and MINE, branch part way up.

Are looking at either MINE or CURC in c-list. Get char’s screen loc from the c=list.

Subtract screen lac calculated above. Am going to do a cruce distence calculation.

Gonna get all bits = $FFED and higher. Effectively the Y coordin
Shift left. Want to get Y axis difference tnto one byte.

Shift the $80 bit off the left end.

he carry = bit not set, branch arcund next instruction.

Fropsge cerry in LSB. Now have Y axis ditference in the A register.
Checking to see if difference is negative,

1t not, branch around next instruction.

Get absolute value. :

Check to see if Y displacement is within 4 pixels. Note, this is & crude rectangular distance func.
1f ¥ displacement > & pixsls, branch back up &nd continue checking the character c-list,

Get here, ¥ within range. Gonna check X coordinate displzcement.

Fake a working copy of X displacement.

lera out high bit. _

Heve seven bit signed X cisplacement. Maximum distance=64 pixels, Check 7th bit to see if negative.
1f not, skip next instructions.

Propagate nagative intde 8th bit so byte is a proper negative.

Teke two’s complement to get X-axis difference.

Check to see 1f X displacement is within 3 pixels of shot’s point of impact.

1t nots branch up to check more characters in the c-list.

The character was hitl Get character numbser trom the c¢~list,

hes 1t a minae? g :

If nots, 4t was CURC, In that case branch belaw,

Get mine’s shape adaress. :

D contzins the screen loc for uhoro.thoishot struck,

Erase mine from the screen,

Celete the mine from the c~list.

Lecrement the number of mctivae mines counter,

Get the numbaer of computér neutrans to be relessed from the explosion of the mine,

Store awamy. Will use as & loop counter, 3 :
Get inert computer shot #., Must make inert so that shots disperse without blowing up on each cthar,
Store as proposed shape.

et deleted mina“s screen location. :

Store as scraen loc. Wwill neke inert shaots originate from where mine used to be.

et deleted mine’s real location. ;

$tore zs real loc.:

Get delated mine's bHit set.

Store 2s bit set.

This will be stored 25 irert shot’s wobble. In five cycles shcot will hecome active computer shot.
Store s uwobhle byte.

Unatron listing pege: 15

2te of the subtraction. Store LSB_f&r.lator

T27 CEC RND4& Cecrement loop counter.

LBEQ €52 I1f equal to zero, we fre done hera. Branch below.
JSR RAMOVECL Get » vector for the inert shot, :
JSR ACDCHE Acdd the shot to the charszcter c~list.
BRA TeT Branch up to see if more are to be added,.
129 LCA 3eX Get heress CURC is in explosion. Get cthar’s wobble byto sc can write correct antishaps,.
BEQ €702 11 wobble byte = 0, then char is in it°s norma)l state. (#s opposed to wobble) Branch.
LSLA $hift wobble byte left toc multiply by two.
ANDA #C2 = Clear out all but secohd bit.
(o (¥ ACOA P | dod to character’s shrpe # to get correct state.
JSR SHPADR Look ub shape in table,
JSR ANTISH Erase the shape from the scresn.
CLR Fy. Calete the chezracter fror the c=~list, .
LDD 1% Gat deleted char’s screen loc. Going to mzke fissfion occur whera character sas.
ST1D PSCR Store 8% screen loc,.
LoD bsX Get character’s real loc from c=list.
STO RLOC Store as real loc.
LCA 6+X Get character’s bit set from c=list.
STA RBIT Store as bit set.
LCA LR Y First will add chain reaction neutrons to c~1list if needed.
STA PSHP Store character # for chein reaction neutrons to the c-list.
STA NP1 ‘Store as wobble byte too. This is decremanted each cycle, 30 the neutron’s max 1ife i3 42 cycles.
LOA CLRC Gonna check how many 1if zny neutrons to add based on CURC’S number. Lower nos. relesss none.
CMPA he2 Check to see 1if CURC is less than or equal to 22 (second atom).
BLE CéoX ‘It 4t i8¢ no neutrons adoed. Branch,
JSR RAOVEC At least one to be adted. Gensrats a vector,
JSR ACCCHE Add the chain reactior nsutron to the c-list.
LDA CLRC Gonna check CURC again,
CHMPA - KNZé - 11 CURE <= 26 (fourth atom) -111 not add any mors neutrons.
BLE Ca8X Less than or esquasl? Brench.
JSR RNDVEC Generate vector for second neutron to be zdded.
JSR ACDCHG Add charecter to c~list.
c46X LCA CLRE Get CURC. Gonna see if we reached the last atom for this rcurd yet,
ADDA #0646 Four ¢+ CURC gives number of next atom (if there i3 snrother).
CHMpPA w42 11 the result is 42, we #re on the last stom and no more are to be added this round.
BKE C4é I1 not the last, kranch,
LDA EwAl Just deleted an occurance of atom Né6. Thars are nc atoms added. Must mako busy wait to slown things wown.
CMPA ®27 Just got end of round wait counter, If equals 27, 1.e. 5 atoms left, will change attraction parameter.
BNE FLP hot equal 25, branch efround next instructions.
LDA KC2 Aew value of ATRACT. Mow last five atoms will jump around less.
STA ATRCT Store as sttraction prrarater,
FUP INC EWAL Increment the end of rourd wait countor. Program will count to EWAl every loop to slow game 2s screen clezr
CLRA : hext character to be 2dded is no charscter. Shape # 0.
C46 STA PSHP Rejoining dinstructions atove. Store A as proposed shape.
JSR RANIVEC Get a vector for ths character,
CLR PR Clear the wobble byte to be added to the c~list with tha craracter.
JSR ADDCHC Sdd new rtom to c-list, _
JSR RMDVEC Must add one more. Get another vector,
JSR ACDCHC Bdd another atom to thre ¢c=list.,
LO8 THP3 Get sh2pe number of shot that caused all this, Must give owner of the shot credit for the hit.
" CMPB r&2 Ww2s 1t & chain reacticon neutron?
BNE T a1 1f not branch,
ea CREAC Cat chein reactions this round counter.
ACDA 4c1 Add one to it for the hit.
Can Fut in proper 3CD form. :
STA CREAC Feturn 1t where 1t cane from.

Unatron listing page: 16

8RA 143 Eranch below.

TA1 [of -} LY. {id » computer hit cause the explosion?
ANE Ta2 ‘If not, branch below. It would hzve to have bsen player’s shot.
LGA CCMH It it was computer shot, get computer hits this round counter,
ADDA #e1 bad one tc glve credit for the hit,
CAA Put in propoer BCD form (it is easier to print later),
STA CCMH Store as computer hit counter.
BRA TA3 Branch below.
TAZ2 LDA YLRH Get your hits counter.
ACODA #C1 Give yourself credit tor the hit,
Caa Put in proper B8CD format.,
5TA YURH' Put it beck, :
TA3 LDY © R12547 WMust check to see if there is a now CURC after the fission.
LDA CLRC Get value of current atonm.
. €51 LEAY S.Y Step through character c-1list.
CHPY #13312 feach the and of the c=list.) .
"BGE €250 If s0, it is time to charge CURC. Branch.
CHMPA Y Check CURC against chiracter in c=-1list. -
BEQ £s2 1f aqual, there is a2t lesst one occurance aof CURC left. Branch out of hera, leave CURC alons.
: BRA& cs51 Keep checking. Branch up to. look at next character in the c~list. '
Ce50 A0DA %C4 If get heres it is time to change value of CURC. Add 4 to c¢ot number of next atom.
CHPA ha2 It = 42 which is > 38 = stom #6, then this rouna is over.
LBEQ ISTART SBranch to start 2 new round. ‘
STA CURL Store new value of CURC.)
€52 LOA TFP3 Randevous in CCAR. Get # of shot that caused the sxplosion.
"ADDA ¥C2 Add two to get number of overlay for the axplosion.
J5R SHPADR Look up the overlay shaps’s adcdress,
JSR BCVYSH PBuild the overlay at locztion of explsion.
LERA DRETY Eranch way up and finish this explosion mess Up..
-

* Contéol_i: transferred to the following sectior whenever the player
* is struck by & aine.

]
CEAD DEC MENL Player’s character hit by mine. decrement numner of player’s "men"” left,.
LDaA K46 Gonna draw explosion shape on .the screen,
JSR SFRPADR Look up sheape’s sddress in table.
JSR WRTSHP HWrite the shape a2t the plaver®s location,
CLRA Gonna make a whining noise. ’ : .)
Lvi CECA A triangle wave of incrersing smplitudse and decrezsing freaquency for 255 cycles.
BEQ BRY hhen Ax0, sound is finished. .
TFR A,8 ‘¥ove A to B where it°l1l ke incremented and sent to the 0/A convertar,
Ly? $T8 $FF20 Store B to D/A converter,
INCH Increment like I said.
BMNE ‘Lv2 Aot = 0, still building this cycle of the wave.
BRA iv1 Gaet to here, this triangle built. Branch up.
BRY LOA pt2 Cone with noise. Gonnz meke pieces fly off the player’s card character.
STA TEP3 Go store the shape number of the first piece here temporarily.
. STA END4 Stores the 112 here. Orly reason is so can be ture RNDG cdoes not equal 0., Explained balow.
BR1 LER TeP3 Cet the number of the picece zdded/not added to the c~-list.
ACDA #C4 Add 4 to get the number of the next axplosion piece to be added.
CMPA #1316 If the piece to be adeed is 1356, tive pieces have alraady bean acddecd.
SEQ BRZ Exit this section if z1] five pieces bave been sdced.
STaA IMP3 Store the new shape number temporarily,
STA PSHP Store it as proposed shapge.
TFR As3 ¥zke & working copy. Are composing wohble byte~ the byte seys how many cyclaes the piece will live.
0kB A¢00 Meka it live fairly leng.

Unatron listing page:r 17

“
513 TFP1 Store &3 propossd wohble byte.

JSR RNOVEC CGenerate a random vector.
ISR ADDCHG Add the character to the c~1ist.
BRA BR1 Eranch up to see if more pleces 2res to be added.
BR2 LOX #12547 Gonna loop through the c~list and process only the pileces. Everthing else in the c-1list resains intact,.
BR3 LEAX 9,X Fake X point to the next character in the c-list,
CLRB heed & Zero.
$18 $FF20 Store it as sound.
CMPX #13312 Cone looping through c=1ist?
BNE 8R4 1t not branch and loop some more.
1sT RAND& Serving as a flag to tell when all pieces have been deletec., If = 0O, all been delasted.
BEQ BRS 411 daleted, branch below. .
cLr RAD4 = Reset flag for all deleted, Will be set true if 2 piece is found in the c¢~list.
BRA BR2 Eranch to start Loop cver,.
BR4 LD4 Py . Get the charscter ¥ pointed to by X,
BEQ - BR3 If zero, keep looping. No cheracter thers.
CMPA #1116 Compare craracter nurker with the lowest of the pieces.
BLO BRY It it"s less, it’s not one of the pieces. Leave it slone and branch up.
ACDA #C2 It is one of the pieces. Add two to get the number of it’s overlay shape.
JSR SHPAQOR Find the shape”’s address.
LCD 4oX Get the piece’s reml loc,
57D RLOC Store as real loc.
LDA [-¥3 Get the piece’s bit set.
$Ta REIT Store as Lit set.,
JSR WRTSHP hrite the overlay shage. (It sas composed last cycle.)
DEC 3I.x Qecrement the piesce’s wobble byte. ;
BNE BRS It not=0, shape gets to live 2t lezst one more cycle. Branch zround next instructions.
CLR X Celete the piece from the c~list. :
ERA BR3 Branch to loop. : ww
BR6 INC RkD& Set the flsg that says thers 2re pleces still left in the c~1list.
LO& #15 Gonna maks & noise,.
ANDA 3.X Value sont 1o A/D converter is piece’s wobble byte’s low 4 hits.
$ST4 $FF20 Store to A/D converter. . .
BNE BR3 If result from last op = 0, will move the plece. Else leeve 2lone. (this way pisces move slowly). 8Branch.
Jse NEWLOC Gonna move plece. Find new locetion.
JSR REALCO Translate t0o reazl coordinates. .
JSR BCVYSH Euild an overlay of piece at new coordinstes, note: shape’s address found above.
LCA X Get # of the piece, Have been warking with the overlay till now.
JSR SHPAOR Find the shape’s addrass.
JSK WETSHP write the shaps on the scraeen,
LCO RLOC Get the gensrated real acdress,
STO0 bGaX Store in c-list »s shape’s repl asddress.
LCa REIT = Get the bit set used. :
STA &sX Store in the c=list as the shape’s bit set.
(1] PSCR Set the screen loc generrted,
STD 1.% Store in the c~list as the shape’s screen addrass,
tos . 3.x Gonpa make some noise. Get cheracter’s bit set.
Log 2sX Get 2nd byte of character’s screen loc.
LATER -Scramble the two. (ke have plenty of time at this point.)
$TA $FF20 Store the M58 to the A/D converter.
8k 4 BR3 Eranch up to loop morae.
kS 157 MENL Cone with the pieces., See how many "men" the player has left.
BNE 585 It there is at lesst one, the game isn’t over yet. Branck below.
JSR TALLY Player is dons far, Put up the score. }
$55 JSR CLlIsp whethar {ts the end or ncts, put up the number of soares.
JSR KBOWAL twait for the player to read it and push the fire button.

Unatreon listing page: 13

LBRA RESTAR Branch way way up.

* P
* Following secticn processes & holemaker,
* It the holemaker hits scmething on the screen & jagged black
* hole is written where the collision occurraed.
*
HOLE JSR SRPADR 11 gaet here, are dealing with a holemaker. Acc & holds the number for a holemaker. Got the shape’s address.
J5R ARTISH Erase the holemaker from the screen so we can move it.
JSR NEWLOC Generate the new screen location from the old and the holemaker®s vector,
JSR REALLO Translate into rezl coorcinates.
JSR OKMOV Check to see it new loc is clear to move into.
BEG LLA It it is, branch belou ard make the move.
JSR RMNOVEC It it isn’t, goet 2 rew vector for the holemakar.
LoD vouT Get the vector.
$TD 7sX Store it in the c~-list as the holemaker‘’s vector.. : . :
LDA 1104 This is the shape number for the hole. It will be drawn =t the spot the holemaker struck somathing.
JSR SFPAOR Look up -the hole“s adaress, ; :
LbD TLOC Get the vidram lo¢ where the holemaker struck something. :
sTO RioC Stors as real loc,.
LCA TEIT Cet the bit set where the holemaker struck something.
$STA RBIT Store ms bit set. '
JSR KETSHP hwrite the hole at this location. Note: tha hole is like Zny other shape,r just colored black.
LBRA ChARS Eranch up to process ¢ new cheracter. : ')
LLA JSR WRTSHP Get hero, it was ok to mcve holemaker. Write the holemaker at. the naw location,
Loco RLOC Gat the real screen loc used.
SID 7 4% Store in ¢=list 2¢ holemskor’s resl loc,
LDD PICR Get the screen location. :
STD 1.,% Store in the c~list as the holemaker’s screen loc.
LDA RBIT Get the holemaker®s bit set used.
STA X Store in the c-list as the holemaker’s bit set.
] LBRA CRARS Branch to process another character,
*
* Section for processing mines. _
* Mipes continually plot 2 course for the player’s character
* until they bump intc something cther than tre glayer.
* The mines will then warder aimlessly for a numbar
* of cycles specified in the wobble byte (3,X). The number
* of cycles spent wandering is calculated betusen two parameters
* gpecifiad in the overlaid data.
® . :
MINE JSR SHPADR - Get here, dealing with a mine. Get the shape address.
JSR ANTISH Erase the shape from the séresn. :
15T L P2 & Chack mine’s wobble byte. If not=0, mine is wardering and not chasing the player.
BME 113 It not = C, branch to precess & wandering mine.
JSR NEWVEL VMine is chasing the player! Generate & vector towards the player’s character.
LCD your - Get the vector ganerzted.
5TD (¥R Store in the c~list as tte mine‘s vector.
JSR NEWLOC Generste the mine’s new location based on the old location &and the nsw vector.
JSR REALCC Translate into real coorainstes. ‘ ’
JSR CKMCYV Check to see if the new locamtion is clear to move into.
BEQ T12 If it is, branch to make the move.
L0D TLOC It°s nots check to ses 1f ue bumped into the player.
CMPD 12551 Check the real loc ageinst the player’s real loc in the c=list.
BKE T4 1f didn“t hit the player’s character, branch.
LCA TRIT May well have kit the pleyer. Will check bit set to be sire.
CHPA 12553 Compare bit set with pglayer’s bit set in tha ¢-1ist,

Unatron listing baqe: 19

T4

T3

T2

BME
JSR
JSR
LiA
ECRA
ANDA
CRA
STa
J SR
L 0O

870

CEC
JSR
Js5r
JER
8EQ
JSR
LGo
STD
L0b
$10
LCA
$TA
J5R
LBRA
JSR
Lco
ST

“LOD

st
LA
STa
L8RA
END

T24
hRTSHP
CEAD
RAD4
RNDY
MINSPL
MINSPH
1.
RNDVEC
ycuYy
7¢X
I.X
NEWLCC
REALLCO
CKMCY

RNDYEC
vour
TsX
b X
RLOC
ErX
REITY
KRTSHP
CHARS
hETSKHP
RLOC
boX
PSCR
1o
REBIT
X
ChARS

Kot the simer didn’t Fit the player desd on, branch,
Fit the player! Write the mine on the scraen.
Flayer is dead! Go make sure he/she knows 1t.

rit somthing and it wasn’¥ ths player”s charscter. Mine must bunble around for a while.

In the proceas of making up A new wobble byte for the mire.

Limit the number of cycles the mine #ill wander atmlessly by MINSPL.
ind make sure it wanders at least MINSPH cycles.

Store in the c-list as the mine’s new wobble byte.

Ganarate & random vector for the mine.

Get the vector.

-Store in c=list as the mine’s new vector.

Get hares processing #l)l wandering mines.

tenerate & new location from mine’s vector and old locatior.
Translate into 2 re2l location. ’

Check to see if new move is ok.

1t it is, branch.

Nor try again. Gensrate snother random vectore

Get generated vector.

- Store in the c=list 23 tre mina’s vector.

Cet the mines real loc from the c~list. Gonna write the mine back where
Store as real loc.

Store the mine’s bit set.

Store as bit set.

hrite the mine back whers it was found in the first place.
Branch to process more charscters,

New move wds oke hrite tre mine 2t the nas locatian,

Get the real loc generated,

Store in the c=list as the mine’ s real loc.

et the screen loc generrted.

$tare in the c=list 23 the mine’s scroon loc.

Get the bit set,

Store in the c-list as the mine’s bit set.

Branch to process more characters.

it was.

Unatron listing pacge:

20

-2

SETDP
CRG t2FAL
PSC2 EQU $2447
P SCR EQU $244¢
RBIT EQU $2443
RLOC EQU 12444
STSH EQU $243E
TLOC EQU $2441
TBIT EQU $2440
vcul EQU $243D
vouT EQU $243C
P SHP EQU $2438
TMP1 EQU $2432
CURC EQU $2432
RAWY EQU $2439
TEMX EqQu $2433
TVEC EQU - 12437
RADt EQU $242F
S$TBO EQU $2402
RND2 EQU $242E
RND3 ECU $2420
RnD4 EQU $¢4cC
RNDS EQU $2428
o
*
-
* are made: PSKEP =>
L] PSCR =>
* TMFT =>
* RLECC =>
- RBIT =>
* VLT =>
% If there is no space
*
ADDCHG LDY N12538
ce0 LEAY 9.
CHPY 413312
BGE £%1
TSY sY
BNE €53 .
LCA PSHP
STA .Y
LoD PSCR
STD 1.7
LEA TMP1
574 3.Y
LCD RLOC
510 boY
LCA REIT
STA baY
LCD vQurt
’ STD 7.
c91 RTS
[3
* RELLCO ~-

Ciroct paje register lopded w/$24 in main program,
Link by hand.

LS8 of screen location.

Scraen loaction,

Bit set,

Feal video ran locaticn,

Start of shape construction fnstructions,
horking temporary for raetl vidram location.
kerking temporary for bit set.

Second bytes of vector,

Yéctor,

Shape number,

herking storage.

Current fissionable charzcter.,

Run zway parametar,

haorking storzge.

horking vector temporary storage.

horking temporery.

* Start of screen layout border.

working temporary.

horking temporary.

korking temporary.

haorking temporary.

ADCCHG = Subroutine traverses character c-list looking for
the first unfilled spot. when found, the follosing assignments

X icharscter shzpe number

1,%X Jiscreen location

3,% suobble byte

4sX ireal vidram locatior

X Jblit set

TrX ivector :

in the c~list the character is not added

Start of character c~list = 9. .

Add nine to point to next character in c-list.
At the end of the c~1ist? : _

Yess no character addeds branch to sxit.

See if this space is occupied. If = 0, not occupied.
Cccupieads branch up tec lcop more. :
Got proposed shape number,

Store in c-list &s new shtape.

Get proposed screen location.

Store in c=list as rew character”s,

Get wobble byte.

Store in c¢-list as chzracter’s.

Get real screen location.

Store in the c~list &s tke charectar’s.

Get bit set. :

Stores in the c-list as thke character’s.

Get generated vector.

Store in the c=list 2s thke character’s.
Return,

Subroutine take screen loc from PSCR znd translates

* into real coordinates. Vidram location is stored inm RLCC

Unatron listing page:

21

* and bit set is stored in R3IT,

REALCO

ci

x12

Ad i 4858 BDIBDD

KHOV

tce

cC3

LCé

cos

CCa

»

LCB
ANDB
5718
LLD
LSRB
LSRA

- BCC

ADOB
LSRE
LSRA
BCC
ADDB
ADOD
$TD
RTS

for coincidence,

LDD

STD
LOA
STA
LCY
LCa
BGE
LCA
TFR
RTS
ANDA
SEQ
LOA
Les
BEQ
LSRA
LSRA
cecs
BNE
ANDA

-1~

CLRA
TFR
RTS
JSR
ERA

psC2
#C3

REIY
PSCR

1o o I
¥$80

x12
®$30
N13312
RLOC

RLOC
TLOL
REIT
TEIT
STSH

- Y

ces
#3504
a,CC

N340
(o o3
#3C0
TEIT
CCs

ccs
CrLccd
CCa

&,0C

NXTSET
cc2

Cet 2nd byte of screen location,

Clear all bit last 2 bits = this makes up the bit set.
Store as bit set,

Get screen loc again.

Tivide by two. Gonna get vidram location.

Civide by two. Gonna get vidrazm location.

i1f no carry gensrzted, skip next instruction.
Fropagate the carry into the low byte.

Civide by two again.

Civide by two asgain.

If no carry generated, skip next instruction.
Fropegate carry inte the low byte.

how have real loc assumirg vidram Lis on page 0, Add 13312 to get page 34,
Store as resl loc.

Return.

OKMOV = Subroutine traces out shape onto the scresn to see

it the spsce s unoccupiede No pixels are written, only checked
input is present position of cursor indicated
by RLOC and RBIT. STSH is sccessed to Qet acdress of start of
sheape writing irstructions. Wher anc it it is cetermined that
one of the pixels to be written would ccincide with sorething
on the screen already the. condition cods register is cleared
and the subroutine returns. If there is no coincidence the

Zero floq is set before return,

Checking to see if spot on screen is clear for a shape to move into. Get vidoo ram location,

Store in eorking temp.

Get bit set,

Store in working temp.

Load index roegister with first instruction for drewing the stape.

Get shape construction irstruction.

1+ not less than 2ero branch zround next instructions, An insteruction less than zero mesns end of shape ins

Gat heres it is ok to move shapc into RLOC with bit set RBIT. Gonna set zero flag in CC to say so.
Set zoro flag.

Feturn,

Check instruction byte to see if pixel being written.

Result = 07 no pixel keing written. 3ranch to bottom.)
Gonna check pixel at TLOC with bit set TB8IT, If there is already 2 1it pixel there=- not CKMOV, SCD is mask.
Cet Dit set. Will shift mask righkt TAIT times.

If TBIT = 0, no shifiting to Le cones, branch.

Shift mask right.

Shitt mask right,

Cecremont shift counter,

If not = Cr not done shitting. Brench up.

And the mask with the vicram locetion,

1f = {, branch to move ciLrsor and continue checking if thke move 1is ok,

I1 the pixel wasn’t blank thenr tke move is not ok. 3¢rna set L to say so.
lero flag in condn cocve is not true ~ move was not ok,

‘Return. Note: TLOC anc TEIT contain location of coincidence. This is used for the origin of explosions.

Fove “cursor’,
Branch up to check next instruction bhyte.

* NXTSET = Moves cursor poeintad to by TLOC anc TEIT, temporaries

Unatron listing page: 27

for RLOC and RBIT.

The cursor bits of the skspe instruction

currently pointed t¢o by the Y registor are consulted te find

XTSET

ccy

c10

i

C14
coy

LECA #%20
_ANDA Y
‘BEQ ce?
CEC TBIT
BGE c10
LCA #C3
STa TBIT
LCo TLOC
SuUBD #C1
ST0 TLOC
BRA c10
LCA 2310
ANDA Y
BEQ €10
INC TRIT
LCA #0464
ANDA TRIT
BEQ c10
CLR TRIT
LEBD TLOC
ACDD L 2ok |
$TD TLOC
LOA #1308
ANDA Y
BEQ [&
Loo TLOC
SusD 832
[of Fo013 #13312
BGE C14
ADDD #1072
aRA C14
LCA #2046
ANDA sy
BEQ LCY
LED TLOC
ADDD #1312
CMPD #16383
- BLE Ct4
S5uBd RI072
STD TLoC
LEAY 1,¥
RTS

NEWLOC

EwLCC

C1s

*

L

* where naxt to move the cursor,
2 :

N

‘Subroutine for moving cursor. (see text for examct detajils.) Gat bit 3 - if set cursor moves laft.

Check bit 3 of instruction byte.

Not set, branch helow.

To move cursor left, docramont bit set.

If bit set grester than or = C,; then TLOC is stlll correct. If nots, (==1) then must correct TBIT znd TLOC.
Bit set >0 and <4, If result above was =1 then new bit set = 3 and TLOC = TLOC - 1,

Stors 25 new temporary bit set.

Get vidram loc.

Subtract 1 to move one byte left,

Fut it back.

Poved left, assuming now that no need to chack for moving to the right. Branch to theck vertical movement,
Eit 4 tells if cursor moves right. $10 is a mask.

‘Mask instruction byte.

1f result=0, dont move cursor to the right Branch to check if cursor is to be moved up or doun.
Cursar moves right. Incrament bit set.

Gonna compare with & (<=>0 snd vidrem loc+1).
Equal to four?

1f nots bBranch to check vertical movement.

Gat hare, set bit set=(,

Gonna increment vidram lcc.

Incremant,

Put it beck.

Mask to check for upward movomtnt of cursaor.
Vask instruction byte,

1t result=0, branch to cteck for downward movemant.,
Get vidram loc.

VFove upward one line (32Xx4=2128).

Is neuw loc below start of vidram?

If nots skip next instruction.

Cause wrap-arcund,

Branch to bhottom.

¥Yrsk for downward movemert.

Fask out instruction Lkyte.

It resultz0, no downuard movements, skip below.
Get vidram loc.

Mave down one line.)

Cid that move. it off the end?

11 nots branch sround next instruction.

Cause wrap-arocund.

Store vidram loc.

Feka Y point to next instruction bytae.

Re turn

- Extracts charecter’s vectore (?,X) znc screen loc {(1,X)

LCD 1+X%
ADDD TrX
BHE €15
ALDD K12288
BRA C1é
CMPD k12287

A

A

4 ‘anc adds them tcgether, Result is new screen loc stored in PSCR.
+&* : 3

[

Gat character’s screaen loc.

ddd cheracter’s vector,

I+ still > 0 (still on tre screen mavbe) branch, . }

Below zero not defined., Add 1228% (# of pixels on the screen) to cause wrap around.
$kip next instructions,

Ctf the end of tha screer?

Unatron listing page: 23

|\\
BLE c1é 11 nots, branch to exit.

) SuBsD #12288 C(suse wragp=arcund,
€16 STD PSCR Store new screen loc.
: RTS Exit,

* } .
+ ANTISH ~ Subroutine takes character’s real vidram loc and bit
» st directly from the c¢-list and uses them 235 the starting

* cursor. The shape instructions pointed to by STSH are used

* to write the shzpe 1in tlack thereby erasing it from the screen
* completely.

*

P

NTISH LCD LaX Gat character®s vidranm loc.
STD TLOC Store in working temporary.
LDA E.X Get character’s bit set.
STA TaIT Store in working temporary.
Loy SISH Get the shape’s zddress, put in index register,
c17 LDA Y Get instruction byte.
BGE €18 It not < Cs, not end of shaps.
RTS Byte < 0, end of shape. Return,
€18 ANDA 140 Check to see if pixel written,
BEQ c19 It nots branch below.
LDA “NSCO Yoes., $CO 1w » pixel mask.
LCB YEIY ot the bit set.
SEQ c21. 1f = D, no shifting of mask need be done,
g2o0 LSRA Shift mask right,
LSRA Shift mazsk right,
CECB Lecreanment counter,
BME c20 1f not = J, not done shifting. Branch up.
c21 CCcMa _ Invert the mask. .
. ANDA LTL0€] Anding causes all bits except masked bits to remain the same.
STA CTLOC] Store it back into vidram. Pixel is now blacked cut.
c19 JSR - NXTSET Get next cursor location.
aRA c17? Branch up to do more.

® 4 5

* NRTSH? = Subroutine takes RLOC and RBIT as starting cursor.
= Shape who’s instructions ars pointed to by STSH is eritten
*+ on the screen,
*
W

RYSHP LDD RLOC Get vidram loc,
$TD TLOC Store in working tsmporary.
LOA RBIT Get bit set.
STA T8LIT Store in working temporary.

: Loy STSH Fut the shape’s address in the index register.

cz2e LOA eY Get instrution byte.
aGE c23 1f not < Os not done. Brench around next instruction.
RTS Return.

€23 TER A,8 hent 2 copies of instruction byte,
ANDA NE4c Check to see if pixel being written.
BEQC €24 1f nots branch to bottom.
ANDB #C3 Fixel being written., Isolate pixel in 8,
LCA ACs Shift left 3 minus bit set times to get pixel in correct location in
SuUBA TBIT Faka 3 minus bit set, ’
STA TVEC fFut here for counting.

. LEA AC3 Pixel mask,

€300 75T TVEC $ee 1f nead to shift,

8tQ cion I1f = 0, no shifting to be done.

byte.

Unatron listing

page: 24

€302

€ 3o

Ca4

VHUL T4

vii

L5SLA
LSLA
LsLB
LSLB
DEC
ENE
ceMa
ANDA
STA
CRB
$T8
JSR
B8RA
LSL
L5L
ecc
INC
RTS

_END

TVEC
c202

[rL0c]
£¥Loc]
£IL0C)
C7i0C]
NXTSET
cz?
vCurt
veul
v11
veur

Shift mask left.

Shift mask laft.

Shitt pixel left.

Shift pixel left.

Cecrement the counter.

hot done, branch up to dc more.
Cone shifting. Invert mask.
Mask out pixel {(make black,)
Fut it back.

Add in shape®s pixel, _

Put i1t back. Pixel is now written!

Move cursor.,

Branch up to do more.)
For vector multiplicatior, Not currently
Myltiply vector LSB.

It carry cloar skip naxt instruction.
Fropagate carry into MS8.

Raturn.

used.

Unatron listing page:

25

SETDP teé Cirnct'pagé rcgisier lorcded w/%24 in main program,

ORG $CEBS Einked by hanc.
ACOCHQ ECQU $2Fa2 fub for adding a chergcter to the c-list.
ANTISH EQU $108¢8 Sub for erasing shape frem screen.
NEWLCC ECQU 33074 Sub for genersting craracter’s new screen loc from char’s old loc and vector.
MXTSET EQU $2017 Sub for stepping moving “curser® while drawing a shape. '
QKMOV EQU $2FES" Sub for checking whetter a proposed move puts char’s shape in an unoccupiled location on the screen.
REALCO EQY $2FCH Sub for translating & screen loc iInto a real loc and bit set. '
VMULT4 ECU $20FaA Sub for multiplying 2 vector in VQUT.
WRTSEP ECQU £208B8 Sub for writing & shepe onto the screen,
P52 EQU $2447 LS8 ¢t screen loctatian.
- PSCR EQU £2446 Scresn location. .
®RIY EQU $£2443 Eit set of 2 real vidram location.
RLOC EQU £2444 Feal video ram screen location,.
STSH EQU $243E Where shape’s beginning zddr is stored after a call to SHPADR,
TMP2 ECU $2431 working storage.
TLCC ECU $2441 Temp and working storsge of RLOC.
TRIT EQU £2440 . Temp #nd working storage of RBIT.
Yout ELU $2430 LSB of vaector.
YourT EQuU $243C vector output and starags.
T™MP1 EQU £2432 horking storage, usuzlly used for wobblr byte,
TEMX ECU $2433 2 byta storage, usually for X raegister.
TVEC QU $£2437 Temporary vector storage.
SVEC £EQU $2435 - Shot vector storage.
RND1 EQU $242F horking storage.
TMP3 ECU $2430 working storage.
$TBO ECU $2402 * Start of screen laycut for this round.
END2 EQU - BZ4ZE horking storage.
END3 EQU $£420D horking storage.
END4& EQU $242¢C Werking storage.
RNDS ECU $c428 Working storage.
SHTBL EQU $2418 * Locatiaon of the shage table,
1M EQU $3241E * Screen location whare CURC is heading for, afinity based om ATRCT,

*

* SHPADR = The shipe number is passed in the 2 register,

* the adaress of the shage is looked up in ths shzpe table
+ and the result is storsd in STSH
-
s

HPACR TFR AeB Subroutine passed shape # through A, looks up shape’s adar and stores in STSH.
CLRA Clean out high byte.
ACDD SrTBL fdd "to the address of the shape table to get the zddress of the acddress of the shspa.
TFR [+ 4 . Gonna do & sort of indirect address.
Lop Y Get value at the offset in the shape tablae. This is the shepe”’s acddress.
5TD STSH Store as start of shape,
RTS Return,

*
* OWNVEC = generates a vector towsrds the AIM location.

* Subroutine swaps pliyer‘s scresn position out ¢t the c-list and
* replaces it with the AIM location ard calls NEWVEC.

* NEWVEC thinks it is genarating » vector towsrds the plzyer.

* Upgon raturn frod NEWVEL the character’s screen is restocred

* to the c~list.

k3
£

WNVEC LOD 12548 Generate # vectore touarcs AIM. Gonna storas player”’s loc away for » minute.
STO TEMX Store it rway. Gonnz call a sub that generates a vector touwards player with a fake playasar loc.
LGO AIM Get the point on the screen where CURC is heading.

Unztron listing paga: 26

STD 12548 Store it as player’s sceen loc fcr a minutae.

JSR NEWVEC Ca2ll sub that generates 2 vector touards the plaver.

LDOD TEMX Vector generated., Gonna put player’s screen loc beck where it was, no one will ever knouw we
sTD 12548 Store in player’s screen loc in c-list. ’ ’

RTS i Go home.

*

* NEWVEC = subroutine gererates a vector towards the player’s character
from whatever character the X ragister is 2cdressing in

= the c-list. Roesult is stored in YOUT.
*
N

EWVEC LOD 1,X For genereting & vecter towards player. Get the character’s screen loc from the c=list.
ANODB A %80 Clear a2ll bits that describe the X coordina2te of thc character.
STD TVEC Store that away tomporarily. ¥
LECD 12548 ANow get the player’s screen loc from the c=list.
ANDB k580 ° Clear all bits that describe the X coordinate.
SUBD TVEC Subitract the player’s Y coordinate from the charactor .
CMPD a0 &re¢ the on the same Y cccocrdinate?
BLE CEOD ~ Same coord or player has higher Y coord hranch around next instructions.
LED HESS Making up vector, Give pcsitive displacement of 2 pixals on Y-axis.
BRA cat Eranch to take care of X axis. :
cggd REQ CE1 Eranch if same Y coord.
LoD #SFFCC Player has louwser Y coord than character. Vector will have ~2 cixel Y axis displacemant.
€ $10 vourt Store the reasult of the Y coord comparison.
Lo8 er¥X Now do X coords. Get Znd byte of character” s screen location,
ANDB HSTF Igolate bits that descrike X coord. :
5718 TVEC Store away for a nanoseccnd.
LD8 12549 Get playar”®s L58 of screan loc,
ANDB #3TF Isolate bits that descrike X coord.
SUBB TVEC Subtract this from chzracter’s X coord.
BNE caz If not the same X coords branch,
: RTS 1¥ the samé, al)l done making up vector. Return.
€82 86T ces It player %5 to the right, branch belows
(R H yourt Gat vector jJenerztecd so far,
SuUsD wC2 Flayer is to the left. Subtract 2 to give 2 pxael leftusrc displacemant,
$T0 vCuT Store as resulting vector.
RTS Feturn,
C83 tLo vour Player 1is to the right. (et vector generated so far.
ACDD Ko2 Give ¢ pixel rightwarc displacement.
STD vyourT Stors as rosulting vector.

RTS Returns
& -

* RNDVEC = Gonerates 2 “random’ vector. Result stored in VOUT.
L] : ’

RNDVEC LODA 12554 Cenerating & ‘random’ vectorout of whatever is leying arcund.
INC RAD1 Change thais,
ACDA RhD1T Focdify that,
ECRA 2sX Scramble 1t up in the pan.
STA TVEL Ard put it here for » minute.
CLR VCUT Gonne make the vector in pieces. Want to start with a 2ero vector.
CLR veud Clear second byte of vector.
ANDA At Gonna build parts ot the vector by checking the hits of the number we just made up.
BEGC Vi1 If the Bth bit=0, branch.
LED HEFFBC Mot = 0, give =1 pixael Y displacement,
510 NCUT Store Y displecement cf vector,
BRA ve2z Go see shout X displazcament,

v01 LCA TVECL Get the number generzted above.

Unatron listing page:

messed

27

wliit,

v02

%03

ANDA
BEQ
LCD
$TD
LGA
ANDA
BEQ
Lo
SUBD
510
BRA
LGA
ANDA
3EQ
LoD
ACODD
$TD
LoD
BEQ
RTS

»(C2
vi?2
#128
Your
TVEC
8C4
vC3
vouT
8
VYCuY
vC4
TVEC
kC8
vC4
vCouTt
#c1
vCuTt
veut
RADVEC

Chack the 7%h bit.

‘It it equals Qs the vector will have no vertical displacement at zll. Branch.

cive vector +1 pixel Y displacement.

Store as vaector,

how X displacement.

Check &th bit.

It = Orno loftward X displacement, Sranch.
Get vector generzted so far,

Give laftwarc cdisplacemart,

Store as vector,)

All donse, branch to tre kottom.

Check for rightward displacement.

Check S5th bit,

It = G- no X displacement. Branch.

Get vector generated so far.

Give rightward displacement,

Store as vector.

Cont want 0 vectors, gonne chack 1t, Get vector,.
It = C» go up and start over.

hon«zero vector generaztecd. Return,

BOVYSH = 3uilds an overlay shape from the pixels on the screen
into the instructions pointed to by STSH. Builcing starts where

are actually mocified in the pixel bits.

OVYSH

100

101

YC&

TC3

tCé

rcs

tCO RLOC
$TO TLOC
LCA RBIT
STA TEIT
LCY STSH
LDA Y
2GE YGC1
RYS

ANDA #3240
BEQ | J o
LCA #3CQ
LCR .TBIY
BEQ YC3
LSRA

1. SKRA

JECB ;
BMNE YC4
ANDA CrLoc)
BEQ Y_<?
LD8 #C3
s5us8 TEIT
3EQ YC5
‘LSRA

LSRA

CECH

BNE YCé
LCB Y
ANDSE #IFC
$TH Y

. ORA Y

-
k]
*
% the cursor is pesitioned, RLOC end RBIT. The skape instructions
k
-
]

Sub builds restore overley for shape. Shape’s addr in STSH, real loc in RLOC &nd bit set in RRIT.

Store real vidram loc here for warking storage.

Get bit set.

Store 23 temporsry bit set.

Get the overlay shape’s 2ddr into the index reg.
Get first instruction byte for overlay.

It not less than zero, there is wore to do. Branch,
Instruyction less than zero then doner raturn,

. Check to see if a pixel is written.

If result is zero, it is only 2 cursor movement instructior. Eranch below,.

.This is & pixel mask,

Get the bit set. Will shift pixel mask right TAIT times.
It bit set = 0, skip next shift tnstructions.

Skift right,

Shift right,

Ceacrement bit set count.

‘It 8 not equal to zero, more shifting to do. Branch up.

Mask at correct pixel. Gat pixel from vidram,

It = 0, will merely clear pixel in instruction byte. Branch to do that.
Fixel non-zeror, gonna shift pixel value £11 the uwusy to tre right to build instruction
Subtract the bit set from the nurhker 3.

If result = 0O, pixel is rll the way to the right +branch.

Shift right, ' '

Shift right.

Cocremant the shift counter.

It not done shiftings, bkrench up.

Gat the irstruction byte a2g9ain.

Clear pixel cut of thae byte,

Put it beck.

Cr the pixel we just shifted into the instruction byte.

Unatron listing page:

byte.

28

Yoz

YCcz

5TA
8RA
Lca
ANDA
STA
JSR
BRA
END

Y

Yc2
#1FC
Y

Y
MXTSET

¥YCo

Store result as new shape instruction,

granch doun.

Fixel was = 0 = black. load a mask into A,
Get 811 but pixel from irstruction hyte.
Store as instruction byte. Pixel = 0 = black.
Call subroutine to move ‘cursor”,

Branch up to do more.

Unatron listing page: 29

START
REALCO
- WRTSHP
SHPADR
CREAC
CCHH
YURH
TCREACL
TCOMH
TYURK
MENL -
PSCR
TMP2
TMP1
TEMX
RND1
TP
RND2
RND3
RMND4
RNDS
ME1
NEZ
ME3
MEL
MES
MES
ME7
MES
ME
MEID
ME11
MEXX
YURMS
TYURHL
TEOMHL
TREACL
SETPTR

ECU
ECU
ECU
EQU
EGU
EGU
EGU
EQU
ECU
EQU
ECU
ECU
ECU
EQU
EGU
ECU
EQU
ESU
EGU
ECU
ECU
EQU
EQU
ECU
ECU
ECU
ECU
EGU
ECU
EGU

‘CRG

124
$2500

$2FCB -

$2088
$ZEBS
$2454
$2459
32458
$2456
$2454
$2452
$2451
$2446
$2431
$2432
$2433
$242F
£2430
$Z42E
$2420
$242¢C
$2428
$2458
$2450
$245F
$2461
$2463
$2465
$2467
$2469
$2468
$2460
$246F
$2471
12473
$2453
$2455
$2457
$2400
$2CC4

Cirect pag
The beginn

@ rogister loaced w/3$24 in main prograﬁ.
ing of everything, .

Subroutine for trenslstirg a screen loc into a rezl vidrem loc and b;t set.

Subrouting
Subroutine
Aumber of
Number of
Number of
Total for
Tatal for
Total for

for writing & shape on the screaen.
for fetching shape instruction address,
chain reactions.
computer hits.
your hits.
chain reactions,
computer,
player.

Player”s men left,
Proposed screen lccation.

korking temporary.

Working temporary.

Working tempoerary.

korking temporary,

horking temporary.

korking temporary.

Working temporary.

Working temporary.

horking temporary.

Address of “Spares:¥,
Addraess of "game over".
Bddress of "This Round:™:
Addraess of "Chain Reactors”
Address of "Computer Hits"
fadress of "Your Hits".
Addrass of “Resction Total"”,
tddress of "Computer Totzl".
fddrass of “"Your Total".
Addrass of "Your High Score".
Address of "0C".

Address where text string for numbers to be displsyed

Your high score stored here.

Low byte of your score.

Low byte of computer score.

Low byte of chain rezcticn score.

* Address of next set of overlaid dta,
Start here.

. TALLY = Subroutine puts up the scorsboard ard the updataed

ALLY

*
*
* ECCres.
*
T

LCD
STD
LDX
J5R
LED
STD
LGX
JSR
LLD
STD
LCX
JSR

Also writes

#1537
PSCR
ME3
WRTMES
r2B17
PSCR
ME S
WRTMES
k4097
PSCR
MES
WRTMES

‘geme over’

whaen applicablse.

For putting up score kboard. 1537 is screen loc whare
Store as scraen loc.

Get the start of the message into the index pointer,
write it on the screen.

Screan loc¢ uwhere "Chain Reactions”
Store as screen loc.

Get the start of the meseage intc the index
krite it on the screen.

Screen loc whnara “"Computer Hits"
Store 25 screen loc.

Cet the start of the maessage into the indax
hrite it on the screen.

will go.
pointer,
will go.

pointer.

is built.

the messzgs

"This

Round:™ will go.

Unatron listing page:

10

Loo

STD
LOX
JSR
LED
5T
LCX
JSR
LDoD
ST0
LDX
JSR
Loo
$TD
LoX
JS5R
LGO
§70
LDX
JSR
LED
STD
LDX
JSR
LCD
STD
LDX
J3R
L2O
§TO
LDX
JSR
LOD
STD
LEX
JSR
CLRA
L0
Jsr
LCoD
ST10
LEX
JSR
CLRA
LOs
JSR
LDD
STD
LEX
JSR
CLRA
LCH
JSR
Lop
STD
LEX

‘W337T

P SCR
MES
WRTMES
#7041
PSCR

TMET

WRTIMES
#az2
PSCR
MES

"WRYMES

#5601
FSCR
MED
WRETMES
#10881
P3SCR
METD
WRTMES
E7148
PSCR
METT
WRTMES
#E428
PSCR
MET1
WRTMES
#9708
PSCR

MET1

WRTMES
¥109882
FSCR
ME11
WERTHMES

CREAC
BCBUFF
#2919
P3CR
MEXX

 WRTMES

CCMH
BCBUFF
84199
PSCR
ME XX
WRTMES

YLRH
BCBUFF
H5479
PSCR
MEXX

Screen loc where "Your Hits"™ uwill appear.

Store as screan loc.

Geat the start of the messzgae into the index pointaer,
Write 1t on the screen.

" Screen loc whaers "Reacticn Total® will go.

Store as. screen loc,

Gest the start of the message intd the index pointer.
Write it on the screen,

Screen loc where "Computer Total” will go,

Store B3 screen locC.]
Get the start of the messege inte the incex pointer,
hrite it on the scrasn. '

Screen loc where "Your Total” will go.

Store &% sgcreen loc,

Get the start of the messa2ge into the index pointer,
Write 1t on the screen.

Screen loc whers "Your High Score” will sppear.
Store »s acreen loc.

Get the start of the message intoc the index pointer.
Write it on the screen.

Screen loc whare "00" will go.

Store #s scraeen loc.

Get the start of the message into the index pointer.
hrite it on the scraen.

Screen loc where "0C" will go.

Store as scroen loc,) :

Get the atart of the message $nto the index pointer,

Mwrite it on the screen.

Another "“0oO©,

Store as screen loc.

Get the start of the message inte the index pointer.
Write it on the scraen.

Screen loc where another "00" will go.

Store as screen loc.

Get the start of the messpage into the incex pointer.
write it on the screen.

Clear out high byte of D register.)
Cat # of chain reactions., Gonna kuild a text string.
Build string for WRTMES from L raegister,

khere # of chatn reactions will ¢o.

Store as screen loc.

Get start addroess of number into X regicter.

krite the number on the screen.

Clear out high byte of 0 register.

Cot # of computer hits.

Turn it into 7 text string for WRTMES.

Where # of computer hits will go.

Store as scraen loc.

Get start address of number into the X register.
write the number on tre ecreen.

Clear out high byte of 0 register.

Get ¥ of your hits thie round,

Turn it into 3 taext strirg for WRTMES,

Scraeen loc where ¢ of plryer®s hits will appear an the screen.

Store &s screen loc.
Gat start address of numker into the X register.,

Unatron listing page:

31

JSR WRTMES Wwrite the number on the screen.

LD3s TCREAC Load bytes of chain rection total inte D in reverse order toc do BECD arithmetic.
LDA TREACL Load low byte into high btyte.
ACDA CREAC Agd chain reactions this round to low byte of chain reaction total.
JSR BFIX Go do DAAs if noeeded,
ACDA CREAC Gonna add chain reaction total agsin because they score three times per hit.
JSR BFIX Take care of BCD arithmetic,
AQDA CREAC Acd for the third and last time.
JSR BFIX Acjust for third and last time.
EXG AsB Cone adding to reaction total. Put bytes hack in order.
STD TCREAL Store 1t away.
JSR BLCBUFF Turn it into a text string for WRTMES.
LGD #7132 Screen loc whare chain reaction total goes.
51D PSCR Store &s screen loc,
Lex MEXX Get start address of numker into the X register,
JSR WRTMES hwrite the number on the scraen.
LCA #C6 Golng %o score computer Fits, Computer gets six times the credit per hit,:
STA. - TPl Fut the six here &nd use as a counter,
Lca TCOMH Gonna add computer hits the way we added c¢hain reactions excapt gonna do it 3 times instead of 2.
LOA TCOMHL Fut low bhyte itnte high byte.
UFF CEC TeP3 Count déwn to zero.
BEQ UGG It squel to zero, done adding computer hits. Branch.
ACDA CCHMH ~ Add computer hits this lest round,
JSR BFIX Ad just decimals,.
. ARA UFF Eranch up to do mors,
UGG EXG ArsB Put the U register in the correct order.
$T1D TCOMH Store for posterity.
JSR- BCBUFF Turn it into 2 text string for WRTMES,
LDD #8412 Screen loc where Computer Total goes.
$T0 PSCR Store 8% screen loc.
LOX MEXX Get start address of number into the X register.
JSR ARTHES write the number on the screen.
Lo8 TYURH Flayer only gets 2 times number of hits made.
LDA TYURHL Put laow byte into high byte.
ACDA YLRH Add hits this round.
JSR BFIX Tzka care of BCD arithmetic,
ACDA YLRH Add ore more and a finsl time,
JSR BFIX Fut the totals back into BCD form.
EXG AsB Put bytes back into correct order.
870 TYURH Fut player®s score away.
JSR 8CAUFF TYurn it into a text string for WRTMES,
LCD §v692 Screan loc where player’s score zppears.
STD PSCR Store as screen loc.
LCX MEXX " Get start addrass of number into the X register.
JSR WRTMES Write the number on the screen.
75T MENL Chneck ano see if player has any men (or women) left.
BNE LC4 1f so, branch dowun,
LED TYURH hos Qgonna see if playar”s score is player’s high score.
CMPD YLRHS Compare to the old high score.
BLO LC4 If less branch around.
STD YLRHS hMaw high scorel Store it #s high séore.
LC4 LCo YLRHS Conna write high s¢ore or the screen.
JSR BCBLFF Turn it into & text strirg for WRTMES.
LED #10972 Screen loc where high scere goes.
$TD PSCR Store as screen loc.
LDX MEXX Gat start address of numkber into the X reglster.

Unatron listing page: 32

JSR WRTMES write the number on thoe screan.

TST MENL Check player’s men left.
BEQ LOS It there 2are none left, kranch around next instructions.
LCD SETPTR Time to seos if player gets o free ball. Happens svery 2nd round., cdependent on SETPTRs luu byta.
ANDB #C1 Because SETPTIR is odds free ball aevery 2nd round.
BEQ XEU It squal to zero, no fres ball this round. Branch around next instructions.
INC MENL GCive plaver 2 free ball.
XQu JSR CCISP Fut up nurber of spares .
CLR CREAC Zero out chain reaction count for next round,
CLR CCMH tero out computer hit count for rext round.
CLR YURH lero out your hit count for rext round.
JSKR KBDWAI Subroutine waits for the fire button.
RTS Go home,
Lo5 Lo #41 Screen loc where "game over" goes.
$TO PSCR Store as screen loc.
LOX ME2 Get mddress of "geme over™ into X register.
JSR WRTMES &rite it on the screen, .)
JSR KEBOWAY thait for the fire button., :
PULS X At present, we are in a subroutine. This will pull two bytes off the harware stack and <more>
LBRA START simulate an RTS without changing the program counter., MNou we can branch safely without overflouwing stack,
-
* WRTMES = puts = string of charscters up on the screen (zlways
* taxt in this apglication). Leading zeros are stripped out of
* the text. The start of the string is pointed to by the X registers
* the end denoted by & shape number of zero. Each sh&pe in the
* string is placed on the screen 5 spsces apart.
]
WRTMES CLR RADS Sub for writing messages., RND4 is » flag to wipo cut leading zeros. (see beslow)
NCO LLCA Xt Cet byte of message.
BGE MC1 In this case if byte>=0, done with mossago.
CMPA #140 Is it a2 "0" (text zerc that is), :
BEQ »10 If so, branch so s not to set RND4.
IanC RAD4 ¥Yake RND& non=zera.
M10 TST RMND& If flag is set, a character not = 0 has heen encountered.
ANE #11 hot equal to zero, skip next instruction.
LDA #Z0B & leading zerol substitute for a blank. (blank = 208)
M11 JSR SHPAGR Look up the character shzpe’s sdocrass.
JSR REALCO Translate the velue in PSCR into bit set rnd vidrem locetion.
JSR WETSHP krite the charactaer.
Lco PSER Genna move to the right, Get the screen loc,
ALCOD #05 | Move to the right 5 pixels,
S10° PSCR Put it back fer the rext character,
38RA MOO Branch up to do more.

01 RTS Cones Return.

M
*
BCBUFF = A bkco number is passed in the D register and turned
* into the corresponding text string for cdisplay by WRTMES,

* The resulting & bytae string is written at MEXX.

*

B

CBUFF STD TEMX For turning a BCOD number into text. D reg holds the number. Stors it here.
Lex MEXX Get address of locaticon uhere will build the string.
AKDA #HEiFD Isolate first 8D digit cf numnber.
LSRA Shift right. Must get diglt %o we can add to 140 (="0") rnd end up with a shape number.
LSRA Shift right again. Note: shape number must be even.
LSRA Shift agsin.
ALDA #1140 bcdd to number for "C" to offsat.

Unatron listing page: 33

STA rx Store in area where strirg is being built.

LCA TEMX Gat the originsl BCD number again,
ANDA #:0F Get 2nd cdigit,
LSLA Shift left to get an even number,.)
ACDA #140C Add offset of ™0™, Note: 140="0", 1423"™1", 144="2" ...
STA Xt Store in area where string is boing built. '
LCO. TEMX Coet original BCD number agsin.
1FR B,A Pake a2 copy of the louw byte ...
§Ta TEMX ses BAnd put it here where we can get it eassily,
ANDA #3FC -Isolate 3rd BCD digit.
LSRA Move right as with first digit.
LSRA ' Shift right.
LSRA Shift right.
ADDA #140 Add offset of character "0,
STA sX+ Store where string is being built.
LOA TEMX Get byte stored away & nano-sscond ago.
ANDA #30F Isolate 4th (last) digit.
LSLA SHift left to get an ever number,
AQDA #140 Add the offsaet,
STA ras; Put it where string is baing built (last character at MEXX)
- CLRA) Need a zsro,
STA X Store in string to signal end of string.
RTS Go home.

*

* KBOWAI ~+ Goes into & busy wait and returns shen the fire
®» hutten in pushed.
- ;
R

BDWAI LDA 65280 Get location whars fire button is mapped.
- CMPA w255 It = 255, button not being pushed,
BEQ KEOWAI Not buing pushed then branch up.
CHPA pi27 If = 127, button not being pushed.
REQ K2DWAI kot being pushed then branch up.
RYS Button was pushed. Return,
-
BFIX = performs the DAS instruction on the whole D register
A (it is only defined for A). Subroutine is caslled with high byte
and low byte of O alresdy in reverse order,
-
aflx Caa . Routine for doing 16 bit BCOD arithmctic. Doctmal adjust uhatever is in A,
BCC TL! It no carry, branch to bettom to return,
EXG AsB Switch A and B so can use DAA instruction an tho lower byte.
ADDA #C1 Add carry into bhyte.
Caa : Uecimal adjust.
EXG A,B Fut ths bytes back into raversed order.
U1 RTS Return.
L]
A CDISP = It the player has any spares left this routine
= is called to display them in the upper left hand corner
* of the scraen.
~
CoISP LCD #1129 Whers moessage "Spares:" will go.
STD PSCR Store as screen loc.
LDX ME1 Address uhere message “Spares:" starts.
JSR WRTMES Write the message.
LDD #550 Location where the shspe for player®s character will he written to display
51D PSCR Store a3 scraen loc.

spares.

Unatron listing

page:

34

	10-unatron-src-part1
	11-unatron-src-part2

