- UNATRON

Copyright (783 by K.T. Dursd

NCTICE

This package is made available on an &s is basis without
expressed or implied warrsnty. Vendcr (author) shall have no
liability or responsibility to customer or eny other party
with respect to any liability, 1loss or damage czused or
alleged to be caused directly or indirectly by the contents
of this package. The information included in this pzckage is
made available without any gerrantee 2as to the accuracy of
its contents or applicability towzrds any purpose at all.
The right{(s) of copy +to all materials included herein are
reserved by the author,

UNATRON_"

Documentation contents?

Flaying UNATRON | 1
1.0 UNATRON graphics | 4
1.1 Videos zddressing 4
1.2 Character shape instructions 5
1.3 Braphics subroutines 7
2.8 Chatracter identities ?
2.1 Character list 9
2.2 Who's who 18
3.0 Animstion | 12
3.1 Vectors 12
3.2 NDVement ; 12
3.3 Collisions and special features | 13
4.8 Dsta | 15
4.1 Overlaid data 15
4.2 Dats tebhles 16
5.8 Modificstions | - 17
%.1 Dats wodification examples 17
5.2 BIRD13X - Replscimg the main loop 17
Appendix A — Shape numbers and descriptions 19
Appendi# B -~ Overlsid data locations 21
Appendix C - Sawple program | 22
Source listings Appendead

Tape contents:
1. UNATRON
2. BIRD13X
3. FURK1Z2X

PLAYING UNATRON

Cormmect the right joystick to your computer snd power-up.
Rewind the cassette to the beginning and set your recorder to
'play’. Enter CLOADM <cr>., UNATRON and 211 of it’'s data
tables are loaded into memory. When the computer responds
"OK” enter EXEC <cr> to start the game. - -

There are two ways to play it. You can try to see as many
screens s8¢ possible or you can play for 3 score. Either way.
gou will Find UNATRON & challenge which will take time to
learn.

ATOMS: As you start 2 round of UNATRON you and one larde
atom are alonse on the screen. As you might have duessed,
your joh is to eplit the atom. The astom splite and two
totally different aztoms result. This will keaep up until
there are 32 smsll stoms. They will dissppesr when hit. You
canhot split any atoms of a diven tups until all atoms of the
previous type asre done.

NEUTRONS: As the atoms prodgress teo smaller types they dive
out neutrons when fissionaed. A neighboring atom, if hit by
& neutron, will split and also relesse neutrons. You can see
how chain reactions start. Whan an stom splits from a2 hit
with & neutron, you don't receive any points. The credit
instead does to & chain reaction totsl. -

COMFUTER GUNS: On each of the different screens ygyou will
notice two stationary objects appear and emit a stream of
particles. These are the computer’s duns. The particles are
the computer’s shots. A fission caused by the computer is
tredited to the computer. That dives us & total of three
scoring parties’ gyou, chain reactions and the computer.

MINES: You may think of the nines as ions if you wish., They
have a8 nedative chards, you have 2 positive one. Mines have
g8 dgrest affinity towards ygou. In fact, interasction between
you and 8 mine is explosive. If you are hit you lose one of
your spares. The deme will pause and show you how mahy you
have left. That number includes the one ygou ars about to
use. The deme is over when you lose your lsst spesre. The
best protection is to shoot them. There is 3 catch though.
You don’t receive any points and the pieces that splinter
sway as the mine explodes are more computer shots like the
ones comind from the guns. The birth of & mine is noted by
2 sharp whining sound and the sppearance of 8 cross shaped
oh ject. Mines are elweys born st the exact same spot for &

given round.

HOLEMAKER: After 3 number of mines ere born, a holemsker

will appear. It simlessly wanders around cutting jadged
holes into the waells. The holes can sometimes be & help.
sonetimes & hindarance, In the 1ater rounds gou actually

have to depend on the holemsher to free you. You cannot kill
the holemaker. :

T~ U VRN SRV TN S - . S RN y s on e %

SCREENS: There are nine screens in this version of UNATRON.
In deneral, they become more difficult for gyou 8s the dame
progresses. After the ninth screen (if gou maks it that far)
play returns to screen 4.

THINGS TO NOTE: Only one type of atom is reasctive at 8 time.
These atoms will travel erraticly across the screen. They
ere gttracted to the point between the computer’s duns. They
are alse smart s=noudh to rum awsy from gyou while gou ars
firing. The transition from one type of atom to snother will
cause atoms to swarm arocurid the compulter’s guns.

After you sre hit by 8 mine the screen is re-drawn and
all the mines and neutrons sre renoved,

The shots you fire move in the ssme direction 8s you and
a8t twice gour spesd. If you are moving too quickly gyou can
fire shots right over an object immediately in front of gyou.

Every atom you fission adds 208 points to your score.
Chain reactions and computer hits receive 3068 and 688 points
respectively.

I1f you are hit by someone’s shot there will be an
explosion but you won™t be damaded. _

An atom or mine need not be hit directly by somebody’s
shot. It’s involvement in the explosion is sufficient to
cause 8 resction.

Starting with the third round, for every second onhe gou
complete gyou are given another spars, _

Whenever there hes heen 3 pause in the dame, pressing
the fire button will move you back into play.

A round is over when 211 of the 63 possible fissions
have taken place.

THE SCOREPOARD: The scoreboard shows how esch of the 63
fissions for this round were distributed. Also shoun are the
scores for the dame so far and the player’s hidgh score. When
the last spare is used up, the scoreboard is put up and play
i over. _

OTHER GAMES: Two other programs sre included on the taspe
with UNATRON. To rum thes, UNATRON must be loaded FIRST as
if it were to be played. Typing CLOADM <cr> agsin will load
the first first of the two prodgrams. A third CLOADM <cd
will lozd the second. These other prodgrams use 311 the seme
graphics routines., dgraphicse date and dats structures as
UNATRON. The main loop of UNATRON is wmerely replaced with
something else. The two other programs ares

1IBIRDI3ZX =~ The obkject of the dame is to jump off one of
the mountains onto a bird and fly it all the way to the top

- of the screen. If gou f211 off, yow go splat.

2) FURKLIZ2ZX - Pushing the fire button gdives a fireworhks
display. If you time it wrond: the firework blows up on the
giraund. ‘ :

L7y

N \ES o _u\ \.:u v/ ex
o 8]

m_r |

W\M. n,_mc_s.e% ,mw \Uc\.mv\
; / ; :

Lo

i

/

o

A __:,:?\

Ca)

{

57 ey

rm._ '

1.0 UNATRON graphics

Fanaging & dynsmic display vusually requirss that
information about the display be in some form other than the
display ditself. Indeed, for muct graphic software the
display is no more than a windou through which the user can
view the models behind it in 2 meznirgful form. In 2 memory
mapped display, such as we 2re using with this machina, the
gption of using +the display to obtzin information about
itself is cpen to wus. UNATRCN manages the screen by
consulting both the asctual video ram znd remotely maintained
data for sachk character,

1.1 Video addressing

A video a2ddressing scheome or schtemes cormon to both the
main program and the graphics handling routines is essential
for coordination of the game. The reguirements for each
differs however,

‘horking with the main program it is convenient to he
able to refarence idindividusl points on the screen with the
highest resolution possible, 1.0. & pixel. The number of
pixels equale the number of rows times the number of columns.
In mecde G3C, as wused in "UNATROMN, this c¢omes out to be
128 X 96 = 12288. So if we wsnt to +talk a2bout the fifth
pixel in the fourth row we czn find it’s ordinal locstion by
128 X 4 + S =517. Note rouws and gixels number starting from
Zero.

Video rzm is not arranged by discrete pixels. Cne byte
may contzin up to eight of them derending on the mode being
used. Routires resding and writing video ram would then have
to trenslaste 2 pixel number into & byte number and an offset
into the byte whenever locating en individurl display paint.

-Referring back to mode G3C and pixel 517, if the start of
video ram is known, the actual pixel <czn be located in
memory. Mode G3C gives us four pixels per byte. The start
of the viceo ream is set by UNATRON tc 13312 decimal. Here is
the formula for translating a pixel number into a video ram
locstion:

Video ram locetion = INTEGER (pixel number/4) + 13312
Offset into video ram byte = MOD4 (pixel number)

Pixel 517 has a video ram locetion of 129 + 13312 =13441 and
an offset of 1 from the leftmost pixel in the byte.

In UNATRCN the pixel number 1is callad the ‘screen
location”. The video ram byte is czlled the “real location’
and the offset is called the “bit set” A bit set number of
0 indicates the leftmost pixel (XXOOCGOD) and 3 indicates the
rightmost (OCCO0OXX).

In summzry, 2 screen location refers to an individual
point on tke screen numbered frem C to 12287. A resal
location addresses an actual byte of video rem and & bit set

Unatrcn documentation ' : page &

describes which of the four pixels in that byte is being
referanced,

LNATRON maintains and works wittr both acdressing schemes
for 211 of it’s active and inactive characters. Having two
methods cof keeping track of each takes a little extra memory
but yields a savings in timo in that enc neod be es3lculated
“from the other only once per move. The instances where 3
screen locztion is used verses & real loceztion and bit set
are well] defined. ' :

Fanagment of a character’s movement is done vis thse
generztiorn of & vector for the chiracter. A vector describes
what direction the character is moving in tarms of it’s
screen location, For instance, given that every 128 pixels
constitutes 2 row, 8 wvector of 128 (CCB0Q) would cause the
chezracter to be displaced ocne pixel in the downward
direction. A vector of =1 (FFFF) weculd likeswise move it one
pPixel to the left. It follows that -1 + 128 = 127 (QQ7F)
would ‘yield & wvector +to move the character diagonally.
Decicding the rew location is merely & matter of adding the
character’s vector to it’s screen location. Screen locations
also have purpose when generating vectors between characters
and pcints or the screen and 1in determining the distance
between them. :

_ hhere tte graphics routines are concernad, the real
locations ard bit sets are wused exclusively. The real
locertion allows easy access to the actual video ram byte and
the bit is wused in preparing masks for operation on that
byte. ' '

Figure 1.1 samples the reclationship betuwden screen

screen location | ‘real location bit set
o7
13312
13312
13212
13312
13313
13313

Figure 1.1 = Relationship between screen locztions and
real locations plus bit sets.

W W - Of
b 03 A N -2 D

locations anc real locations plps bit sets.

1.2 Character shspe instrucions

the notion of a cursor &pplies well to the Jjob of
writings refcings, erasing and checking for coincidence of
shapes on the screen. A cursor hes ¢ unigue location at any
given time. We &re used to seeing the cursor when
interecting with a computer but can imagine it’s existance
even 1if it 4s not wvisible. The shapes in UNATRON are
constructed vis & cursor,

Unatron documentation pege 5

Chargcter designs stored in memcry describe what a shape
will look like one instruction 2t a time. Each of these
instructions takes one byte, each describes what to draw and
how tc move the cursor, The number of <these required to
~construct a shape depends on the size of the shape. Encoded
in the instruction bytes are bit patterns which describe what
the pixel to be written looks like (if one is to be written)

Bit ‘ .-0--—1-.-2---3-.‘4'--“5“--6-.-?_s
S R R T D D D
lEJWILIRIU]D|»® p|
I Nl RJEJ PO+ 4]
ol I JF1G6] | wi|x x|
bl Tiel INfe elf
A O O R B G O

Figure 1.2 = Instruction bits for shepe construction

end where next to move the curscr.

Bit O, uhen set, signals that we have reached the end of
the instructions for writing this shape. Using one byte
erithmetic +this condition is easy to check for., If bit 0 is
set, considered as an integer, then the byte is negative,
hence end of shape.

. Bit 1 tells whether or not 2 pixel is to be written, It
is wholely possible to move the cursor without setting 2
Pix&l. :

Bits 2 #end 3 control <the herizontal wovement of the
cursor, If bit 2 is set, the cursor is placed left one
pixel, If bit 3 is set it is moved to the right. Movement
of thre curscr slways occurs after sriting # pixel if one is
to be written, ' .

gits 4 gnd 5 control the verticzl movement., When &4 is
set the cursor is moved up one pixel and of course bit 5
moves it doun. Combinations of verticsl and horizontal
movement are completely legal. : '

Bits 6 #nd 7 are the pixel itself. If kit 1 is not set
then these tuo are ignored. Otherwise the value (00 - 11) is
written at the point on the screen where the cursor is

positioned.
Consider the following instructions:

Y

47
04
62

0100 0111 write pixel 11, move doun

CCOC 01C0 move douwn

0110 0C10 wurite pixel 10, move left

0101 0101 write pixel (1, move douwn and right
011C O0CL1C write pixel 10, move left

010C 0C11 write pixel 11, dont move cursor
4111 1111 end of shape

w
w
NN o unmn

These instructions describe 2 dot with a multi-colored
rectangle wunder it. Jumping shead & little, the shape your
character starts with is #é6. (I haprpen to know, its 1in the
source and Appendix A)., Shape number & looks like & V. The
memory address of the idinstructiors +to drzw this shape is

Unatren docurentation : ' page 6

$101E. If ycu type in the seven bytes given above &t that
address and start up the game, lo and behold a dot with =2
rectangle uncer i1it! '

1«3 Graphics subroutines

Bcforc writing any shapes on the screen we have to dispence
with some prerquisites. First we hzve to set where it is to
be written, that is to say, wuwhere to position the cursor
initislly. Memory locations RLCC znd RBIT g#re used to hold
the real video ram location and bit set of = point on the
screen. As far as the graphics routines 2re concerned,
setting the values there sets the locstior of the cursor on
upon entry te¢ the routines.

Secondly, we have to somehow tell those routines uwhere
to find the instructions for the construction of the shape.
Each rounc accesses one of seven thare tables. Each of the
tzbles contzins <consecutive tuo byte addresses of the
starting points of shape instructions stored in mamory., The
16 bit word zt SHTBL contains the location of the shape table
being accessed this round. For arqument say SHYBL is equal
to $ELQ0. If we wanted to know the acddress of the instrucions
for drawing shape #6 wouldn’t it be convenient to be able to
add the 6 to SHTBL = $800 + ¢ = $806 and look it up there?
Well, thats exactly how it is done. There is a subroutine,
SHPADR, which does this process a2nd puts the address in a
location STSH (stert of shape). We reed only pass it the
number of ths shape we want to look up.

defore returning to discussion of the graphics routines
let rme Just say & feu things abcut shape numbers. -Shape
numbars are slways even. This is because the addresses in
the shape teble are two bytes long. Asking for shape number
3, for instarce, would cause 3 lockup which would return part
of the address for shape number 2 anc part for shape number

- Shage number:
S c | 2 | 4 i é |

i R | S | s |

T msb:lst | msb:lsb | msh:lsb | msb:lsb |
L A shape #3*
| illegal |

Figure 1.3 = Shsape numbers must be even

4. Egch shace table can contzin @ meximum of 128 eddresses
for aistinct shepes. There is nc reazson why different shape
numbers can’t point to the same instructions., . In fact, in
UNATRCN they often do. _

We hrave now set wup the cursor and located the
instructions for the shape we sant to write on the scraen.
What next? hrite the shape by calling & subroutine named
WRTSHP. :

Unatrcn decumentation page 7

-1In 211 there are four subroutires which access video
ram. Each handles & distinct task., WRTSHP, as explained
above, draws 2 shape on the screen.

The characters of UNATRON have the appearance of being
solid. When one collides with another or bumps into a wall
the physical presaence of the impeding object seems real. 1t
prior to writing 2 shape we take the instructions for
constructing it and trace them out invisibly we can determine
“1f 1t would be draun on top of at lesst one pixel which was
already 1lit. The result of such ar operation could be used
to determine whather the character should bounce, explode or
any number of things depending on it’s nature. The
subroutine 0OXMOV does @all the hardling for this. It's
required setup is the same as for WRTSHP. The condition code
register is modified wupon return to give the status of the
check for coincidence. _

Sometimes we want to temporarily uwrite on top of
sometring whtich is #lready on the screen without destroying
it. Take for example an explosion., We want to write uwhat
looks 1like & blast and <then erzse it. If the explosion
occured on tep of & wsll the erasure would tezke a piece of
the wall withk it, For this reason UNATRON maintains what are
called OQOverlay Shapes. Overlay shapes are no different from
eny other shzpe in their instructions, rather in the way they
are used. The subroutine BOVYSH reacs pixels from the screen
in & pattern described by the cursor movements in the shape
instructions and stores them in the pixel bits of each. If
we wented to draw a blast and then restore the screen we
would need an overlay shape with the same cursor movements as
the =shape of the blast itself., The overlay shape would need
to be recorded frem the screen with 2 c¢2ll to BOVYSH, the
blast written by WRTSHP and the overlay written in the same
spot sith ancther call to WRTSHP, The subroutine BOVYSH uses
the seme setup data &8s WRTSHP and OKMCV.

The last of the four graphics subrcutines directly
accessing video ram is called AANTISH. Prior to moving 2
chargcter or if one is destroyed it must be erased. ANTISHE
takes +the stape instructions and writes them pixel for pixel
in blzck. (In other words, the articshape 4is written) Like
the octher three routines ANTISH gets the shape instruction
address from STSH., The location cf the cursor is not taken
from RLOC end RBIT however. The point on the screen where
the antishepe is to be written is extracted from the <c¢-list.
The c¢=list is explained in detail ir section 2.1 but a2 short
explaration here coulan’t hurt,

Every living character has information about it’s
position and ststus stored 2long with it in one master list.
The video rezl video ram location and bit set for sach can be
found there. These describe the cursor locaztion where the
character is written and #re directly accessed in erasing it.

In summzry for this section, there are four subroutines
which access the video ram exclusively. WRTSHP draws a shape
on the screen. OKMCV checks for coincidence. BOVYSH builds
en overlay stzpe from the video rm, ANITSH erzses s&sctive
characters from the screen. .

Unatrcn documentation page 8

2.0 Character identities

UNATRCN has the capability of keeping track of up to &5
disctinct @ctive cheracters zt one time. How & character of
2 given type ascts and reacts is herd coded but the number and
distribution is a matter of what happens during playe. Bata
for each chtzracter is maintained 2nd updated each cycle of
the program,

2.1 Character list

To keep track of animate charactaers UNATRON maintains ®
chargcter list or c~list for short. It fies located Jjust helou
the video rzm from 12547 to 13311. Every nine bytes of the
list constitutes space for an entry into the 1list. I will
explzin what each of tha nine bytes is used for and return to
discutsion of the list 2as 2 uhole later.

Characters are fdentified by a one byte even number
rangirg from 2 t¢ 128. The mzin loop uses this number to
determine how 2 character should react, i.e¢. holemakers
shoulc e2t s2lls, mines should attack etc., The number for 2
charzcter often tells what shape it is. That is to say, for
character #44 draw shzpe H44. Simpls encugh.

Cf the rine bytes of each c-list entry, byte 0 is the
shape number,

‘For eacH character, the screen location it presently
holds is stored in bytes 1-2.

Eyte 2 is called the wobble byte. It is described in
more detzil din section 3.2 but briefly, it is used by the
main program to keer track of special features of the
character. :

Eytes 4-5 ccntaiﬁ the <character’s present video ram
address, '

BEyte 6 contains the bit set for the video ram address in
bytes 4=~5,

BEytes 7-8 hold the character’s present vector. The
vector describes uwhat diraction it is moving with respect to
it’s screen location.

To locatse a charzcter or to scar the c~list we start at
the beginning, 12547, and step through nine bytes at a time.
The progrem is set up so that the first entry 1s ALWAYS the
player’s character. Often the plaver’s vector, screen
location etc. is wsccessed by address eas opposed to
addressing offset tc an index register as with other c¢c-list
entries. An entry with shape number C is reguarded 25 a hole
in the list #nd may be filled in by zny subsequent entries.

The c~list is available to the wain loop and the vector
generzating routines. Characters zre &added by 2 ¢tall to »
subroutine ACQOCHQ. The compohnsnts t¢ be added, i.0. shape

Unatren documentation page 9

114 75711

1011 1777727

3
N
|
| IT SEY

0 é

A F Y A

| | | |_VECTOR
| | |8

I | Lecc

)] | _WCBBLE

| | _SCREEN LCC

| _SHAPE NUMBER

‘Figure 2.1 = Nine bytes of a c-list entry

number etc., are picked up from the local equates as shoun in
figure 2.2. Deleticn is simply 2 matter of setting the

PSHP => ,X scheracteor shape nimber
FSCK => 1,X iscreen location

TMP1 => 3,X Jwobble byte

RLOC => 4,X rsreal vidram location
RBIT => £,%X 7ibit set

YOUT => 7,X Jvector

Figure 2.2 = Clist assignments from equates
c~list entry’s shape numbser ecuasl to C.

2.2 Wro’s whe

Appendix A 1s 2 list of +the shape numbers and =2
description of which shape corresponds to each. As you can
sees more than one shape may belong t¢ &an individual
character, Many of the shape numrbers are nsver entered into

~the ¢c~list to become active charrcters though any even

numbered chzracter is legal. It the shage number for the
letter "2" were asdded to the Gueue fcr exampler it would be
treated 1like it wes someone’s shot. The shrpe on the screen
would be &n "a™ and it would move wuntil it hit something.
The subset of active shazpes thet is used you will recognize
from the game. Tho difference in their actions comes. from
how the progrem discriminates them ore from 2nother.

In the mein program, Just under the lsgbel CHARS, is
where the discrimination takes place. These #re the
categories ctraracters are lumped inte:

1) CURC = current charzcter cr reactive atom. The
equate CURC holds the character number for the reactive stom.
If the entry we are looking at is an occurance of CURC,
acticers may be taken to meke it either run from the player or
head towsrds the computer’s guns (AIN),

2) Mines = mines are sluays character #106

Unatren docurentation page 10

' 3) Holemakers - always number 1(C2

4) Anytting >= 42 is either somesone’s shot or a neutron.,
etc. The common denominator is thzt shen it hits something
it explodes. Say the character is number X (X>=42). Shape
number X+4 will be the explosion and X+2 will be the overlay
for the explosion. This is +true for zll explosions of
characters >= 42, :

5) All else = everything else is considered b
non=re¢active atom, It will move in one direction until it
hits something, recieve & new vector and start a period of
wobbling betueen shape X and shape X+2.

Unatron cocumantation page 11

3.0 Animation

Most movement in UNATRON is linesr and has a conditional
sttacked where the movement is blocked. The methodology for
moving all characters is the same, the motivations are
different.

3.1 Vectors

Let’s say you are at spot X0. You want to mcve to spot X1
“and efter that X2. Presumsbly X1 and X2 2re in = straight
1ine path awsy from you and the szme distance apart as you
are from X1. The point X1 is some number of pixels; say A,
sway from you in the horizontal direction and 8 pixels away
in tre vertical direction. It is simple now to generate &
constant thich when added to X0 gives X1 and when added to X1
gives X2, i.€s. & vector. At a resolution of 128X%6 (G30)
‘the vector we want is A + 128 X B. There is no reason why
the vector cznnot be less than zero.

There are some practical considerations’ A vector of too
great a magnitude will cause movement from X0 to X1 to X2 to
look . jerky or perhsps unrecognizaktle. Zero vectorss while
completely lecals are avoided for most UNATRON chzraters.
Cnce one has stoppad moving it csn-be'very hard to get 1t to
go again! :

Vectors may be ganerated randomly or may be directed.
Three subroutines exist for these purposes. The first.,
RNDOVEC, produces & vector with a maximum displacement of one
pixel in the X and Y directions.

" The secands, NEWVEC, generates one towards the player’s
charecter or mhoevar holds the first position in the c¢c-list.
Note that taking the negative yields a vector away. The
maximum displacement is two pixels in two directions.

The thirc, DWNVEC, gives a vecter towards <the locaztion
stored in the tuwo byte word equated to AIM. Generally AIM is
set to the pcint betuween the computer’s guns.

The results for 211 three subtroutines is placed in VOUT.
Each character in the c-list has it’s own vector stored along
"with 1t The player’s vector is of coursse generatod from the
Joystick position.

3.2 Mavemant

In +this section the generic process of moving a
character is outlined. £1]1 types of characters have other
festures specific to +themselves. Those zre outlined in
secticn 3e3, .

Betfore moving any character the first <thing <to do is
erase it. If we wc«idn’t, the bestt we could hope for is 2
smear as it made it’s way across tke screen. A cell +to
SHPALDR locates the instructions for the shape. The
subroutine ANTISH takes the real locztion and bit set of the
character we are loocking 2t @#nd uses it as the starting

cursor location for the erasure. The shape has now been
blacked off the scresn.

Unatron documentation | ' page 12

A call to the subroutine NEWLOC takes the character’s
vector and screen . location and adds them together. The
result is a rew screen location placed in PSCR. For the sake
of the graphics subroutines a c&zll to REALCO translates the
screen location in PSCR into =2 res)l location and bit set
which are pleced in RLOC and RBIT respectively.

how we are ready to +try anc make the move. The
subroutine OKMOV is called to see if at the location where we
wish to plzce the character there is not 2t least one pixel
alresdy lit. If there is, the move is flagged as not ck. A
random vector is generated and the procedure tried 2gain and
then once more if neccessary. If the character still cannot
be moved it ig re~uritten where it was when we started and
the move is given up for the time being.

If CKMCV returns ok, a c2all <to WRTSHP draws the
character or the screen at the neuw locetion. The vector,
screen location, real location and bit set used sre picked up
and placed irn the c=~list along with the charazcter to complete
the process.

3.3 Cellisions and specisl features

Atoms: Whenever an atom collides with something else it
starts a period of wobbling. Say the &stomr has character
number X, Every second cycle skape number X+2 is being
written in place of shape X to create the wobble.

hhen the collision is detected byte 3 of the character’s
¢=list entry is ma2de non-2ero. It is decremented every cycle
from then until it reaches zero, the odd values causing the
wobble. Byte ‘3 of the c-list ertry is called the wobble
byte. ; ' .

Mines: After a collision a mine will enter a period of
aimless uwandering (provided it wesn’t the player who was
hit). The wcbble byte for the mine is set to 2 non-zero
value and decremented each round hence. When it reaches zero
~figain the chzseo resumeos. :

_ Folemakers: Upon collision the holemaker is given 2 new
random vector. At the point of impasct & share of completely
black pixels, a hole, is drawn.

Shotes and neutrons: Collision tere causes the shape to
be deleted from the c~list and an explosion to be dra2un. The
blast occurs at the ftirst pixel found to glready be lit by
OKMOV when it checks. Ths first reactive atom or mine, if
any, found in a crude rectangular a2rez arocund the blast is
2also celeted &nd handled appropriztely. Only one atom or
mine may lose it‘s life in 3 single explosion.

Inert shots: When 2 mine is exploded the peices which
fly 2usy 2re temporarily inert computer shots. The truth is.,
they are actually different charscters altogether. The inert
shots are locaded into the c=list with a wobble byte of 5.
When 5§ cycles are over their shape numbers are replaced with
those for the actual computer shots., This is done because in

Unatren docusentation page 13

the small 2rea 6f an explosion a fair ﬁumhor of the shots
released would explode on one znother if they were not
temporarily inert, ' '

Unatren documrentation page 14

4.0 Data

The personality of UNATRCN is 1argoly tracaable to the
date ingestec by the program.

4.1 Cverlaid data

.~ Round by round the game changes. This |is accomplished
not Eky counters or flags but by chznging the first level of

One byte ecuates:

61L Length of shot originating from gun 1.
Gal Length of shot originating from gun #2.
GCH ‘Relative chance of computer guns firing.
MAXH Max ¥ of holemakers to 2ppesr on the

- screen this round.
MAX¥ Max # of mines that can aprear on screen

this round.

MBEFH Nurber of mines that must appear before

' a Fole appesrs. '

MINCH Reletive chance of & mine zppearing.

MINSPH The longest number of cycles a mine will
wait before chasing player.

MINSPL The shortest number of cycles a mine will
wait before chasing pleyer. :

NUMN Nunmber of nasutrons relezsec when & mine
is exploded.

Yeo byte ecuates:

AIM Screen location uwhere CURC is hcading for,
affinity based on ATRCY.

G615 Screen loc of where gun #1 appears,

G1v ‘Vector for shot originating from gun #1.

628 Screen loc of where gun #Z appears.

G2V Vector for shot originating from gun #2.

MANST Screen loc of where player’s character starts,

MSCR Screen loc of where mines 2ppear,

STEC Addr of start of screen borders layout.

SETPTR Adecr of next set of overlaid data,
SHP15T Screen loc of where first ztom starts

Figure 4.1 Overlsid data eauates

data driving the program,.

There are parsmeters with values specific +to & round
which must be consulted repeatedly by UNATRON, ECxamples are;
the screen locations for +the computer’s guns, the maximum
number of mines allouwed on the screen, etc, Because the
values hsve to be looksd up often, any stvings in time in
doing that is significant. A very f&st method it to store
all values in the 256 byte page of memory pointed to by the
direct pege register, Access to the parameters is direct, as
opposed to extended, and hence takes less space and time.

The direct page register is set to pzge $24 in UNATRON.
The +first $29 bytes of that page is what is referred toc as
overlaid data. At the start of ezch round those $29 bytes

Unatren documentation page 15

are picked ugp from the memory locsetion indiceated by an eguate
celled SETPTR and transferred to $2400 through $2428., The
overlaid dats controls what shape tatle will be wused this
round and uhere to find the deta words toc draw the screen
smong other dhings. Figure 4.1 it a list of these items and
their descriptions. See also sppondix B, At present $1F of
the $29 bytes 2re being used. _

In addition to the overlaid catz, all temporary storage
takes plece in pace $24 slso. '

4.2 Det; tables

1) The addresses of shapes are in 7 seperate tables st $800.,
$900, $ACO, $BCD, $CO00, $DC0 #nd $EO0. One of these shape
address tebles is accessed each round. For srgument, say the
round we 2re in uses the tabls a2t $800. The address for
shape #2 czn be found at $802, the address for shape #4 at
$B04, otc.

2) The shape instructions start at $1C00 2and extend up to
$142C. There is some free space after that.

3) Screen border layouts start 2t $2CC0 and extend to arocund
$2200. The layout for screen #5 is tucked in at $FOD.
Border layouts consist of consecutive two byte screan
addresses ir two groups. The 2cdresses whare shape #1(C8 is
"to0 be draun come first, delimited by 2 negative -address and
then followed by addresses for shape #110. '

4) Overlaid datz. The informaticn here controls the
difficulty c¢f e2ch rounds, what screen layout to use, what
shape table to access and where to find the next set of
overlszid data for the next round. There sre nine sets of
dsta, one for each round. Each is $29 bytes long. Sets
start at $2200 and are overlsid byte for byte stzrting at
$240C. Overlaid EQUates 2arae markaed by an asterisk in the
-source. (S5ee figure 4.1)

5) Text strings start at $1B0C and extend to $1B%C

Unatron documentation page 16

5.0 Modifications

There are two ways to modify UNATRON. The first, shoun
by examples in section 5.1, involves chenging the cata that
UNATRCN ests. The second, section 5,2, involves replacing
the mein loop with a different piece of code.

5.1 Data modification examples

1) 82214 1is the location which controls the number of
holemzkers =#llowed in round 1. (Seeo appendix B) It is
normally set to 1. Changing the 1 byte value 23t $2214
ghangas the number of holemekers wtich will appear in round

2) The &ddress of the screen layout for round one can be
found at $2202. It will be found to be equal to $2C00.
Placirg the following four 16 bit words at $2000 will cause
the screen layout of round one to have only one horizontal
and ore vertical brick at the upper left at the screen,

"$CCO00 sscrean adcdress O _ :

$FFFF 7dcne with horizontals

$0C00 ’screen address 0

$FFFF jdone with verticals

3) The shape # for thae hole the hcleraker writes when it hits
semething is 104. In the first round, the shape table is
located 2t 3$B800. Adding the 104 + $800 gives $868, the
address of the instructions for writing the hole. Tha
instructions for writing an "e¢" zre 2t $141D. If the two
byte value 2t $868 is changed to $1A10 an "e" will be written
whenaver the holemaker bounces into something.

4) The sdoress of the start of the text string "Computer
Hits” can be found at $2463 (from listings). The address is
$iB5€. Copying the following bytes into memory starting at
$1BSE will cause the word "potzto" to be printed instead of
"Computer hits"”. Note the bytes zre in decimzl form this
time. .

18¢ Mo

184 ;"o"
198 ;"e"
160 i"a"
198 ;"t”
186 ;"o"

C ienc of text
5.2 BIRDIIX - Replscing the main loor.

Load UNATRON into vyour computer froem <tape as you
normzlly do. Don’t type EXEC this time (though it won”t hurt
if you do, Just hit the reset button). . Type CLOADM <cr> a
seconc time. A short program called BIRD13X is loaded on top
of anc¢ replacing the ULNATRON main locp. You can type EXEC
<cr> now.

Unatron docurmentation page 17

BIRD13X uses the c-list, the same shapes, shape tables
and subroutines as UNATRON. The mountains 2re from round &4s
the birds are from round § (hsve you ever seen them before?)
The object of the game is to jump off one cf the mountains,
onto @ bird and fly 21l the wasy to the top of the screen. If
you fall off and plunge too far you go splat and lose the
game, : .
’ Like BIRD13X, the program in appendix C can be assembled
and loaded ON TOP of UNATRON to mske & completely different
progrem. It loads 80 dots into the ¢-list and causes them to
alterrately cluster and disperse. The program watches the
value in TMP3 to decide what the dots should do.

Unatron documentation _ page 18.

Apbendix A - Shape numbers and descriptions

2 Pleyer facing 9 o“clock
4 Player‘s character facing 2 o’clock
é Pleyer’'s character facing 12: CO
- . 8 Pleyer facing 10:30
10 Pleyer facing 1:30

12 Player facing 6 o”clock
14 Player facing 7:30

16 Player’s character facing 4:3C
18 Atom #1 normal state

20 Atom #1 wobble state

22 Atom #2 normal state

24 Atom A2 wobble state

26 Atom #32 normal state

28 Atom #3 wobble state
30 Atom ¥4 normal state

32 Atom #4 wobble state

34 Atom #5 normal state

36 Atom #5 wobble state

38 - Atom %6 normal state

40 Atom #6 wobble state
42 Chzin reaction neutron
44 Overlay shape for exnlosion.
46 Explosion

48 Player’s shot first shape,
50 Explosion overlay shape
52 Explosion

54 Player’s shot 2nd shape
S& Explosion overlay shape
58 Explosion

60 Player’s shot 3rd shape
62 Explosion overlay shape
€4 Explosion

&6 Player’s shot 4th shape
&8 Explosion overlay shape
70 Explosion

72 " Pleyer’s shot S5th shage
74 Explesion ovarlay shape
16 Explosion

78 Pleyer’s shot 6th shape
80 Explosion overlay shape
g Explosion ;
84 Player’s shot 7th shape
86 Explosion overlay shapse
g8 . Explosion

¢0 Player’s shot 8th shape
92 Explosion overlay shape
94 Explosion

6 Computer’s shot

98 Explosion overlay shapse

100 Explosicon

102 Holemzker

104 Hole (shape is black)
106 Mine

Unatron docurentation : page 1§

108 Screen layocut shape 1

110 ‘Screen layout shape 2

112 Inert computer shot (mine disintegration)
114 Unusec '
116 When player hit, this plece flitters away.
118 Overlay for above

120 Flittering piece when player kit
122 . Overley for above

124 Flittering piece when player kit
126 Cverlsy for above

128 Flittering plece when glayer hit
120 Overlzy for above _

132 Flittering pisce when player rit
134 Overlay for above)
136 Computer gun #1

138 Computer gun #2

140 NGN

142 "1"

144 llzll

146 "3"

148 ll‘ll

150 “5"

152 ﬂéﬂ

154 ll?ll

156 lleﬂ

158 !09"

160 ﬂaﬂ

162 b

164 e

166 lldll

168 l.ell

170 "gll

172 ”H"

174 "h"

176 "i®

1?8 "1"

180 "m"

182 W

184 "o

186 "p"

188 "R"

190 "rli

192 "s®

194 gt

196 ey

198 "ngn

200 TR
- 2C2 "y

206 “y®

206 ll:ll

an ” [[}

210 ~ 254 urused

Unatron decumantation page 20

"1

Appencdix B = QOverlaid data locations

Varizble Round1 Round?2 Round3
SETPTR 2200 2229 2252 tes
STBO 2202 . 22¢B 2254 ees
MANST 2204 2220 2256

SHP1ST 2206 222F 2258

G1S 2208 2231 2254 -
61v ; 220A 2233 . 225¢C ese
G1L 220C 2235 225E

62S 2200 2236 225F

G2V 220F 2238 - 2261 enw
G2L €211 223A 2263 see
GCH €212 2238 €264

MSCR . 2213 223C 2265

MAXM €215 _ 223¢ 2267 esa
MINCH 2216 223F 2268 aew
MINSPL 2217 2240 - 2249

MINSPH 2218 _ 2241 226n

MAXH €218 2243 . 226C P
SHTBL ¢218 2244 226D '
NUMN 221D 2246 226F

AIM 221E 2247 2270

Note that each successive occurance of a data item is $29
bytes from tFe last occurance. There a2re presently 9 sets of
overlaid data with room for & tenth in the space Iimmediately
following the rinth. The locstion SETPIR tells where the
next $29 bytes will be found when this round is finished.

Unatron documentetion page 21

Appencdix C - Sample program

SETDF $24
ADDCHC EQU $2FA2
ANTISH EQU $3088
NEWLOC EQU $3074
REALCC ECU $2FCB
WRYSHF EQU $3088
- NEMWVEC EQU ‘$2ED4
RNDVEC ECQU -$2F15
SHPADR ECU - - $2EBS
OKMOY EQU $2FES
PSCR EQU 824446
RBIT ECU - $24473
RLOC - EQU $2444
VCUT ECU $243¢C
PSHP EQU . $2438
TMP1 ECU $2432
TMP3 EQU $2430
SHTBL EQU $2418
ORG $2500
LDA £824
TFR a,0p
STA 65478
5TA - 65481
STA 65482
STA 65485
STA 65487
STA 65488
STA 65472
STA 65474
STA 65477
LCa #255
STA 65314
LCX #12547
LC1 CMPX #16383
BGT - LO2
CLR s X4
BRA Lo1
LC2 LCD #3CDO0
YD SHTBL
LCD #5898
s1D PSCR
JSR REALCC
LCA #38
514 PSHP
JSR SHPALR
CLR THPZ
X01 . INC TMP3
LCA TMP3
CMPA #80
BGT XC3
JSR ADOCHG
LDD PSCR
ALDD #01
$TD PSLR

Unatren documentation ' page 22

XQ3
XG4

XC5

XC6

XQ9

BRA
INC
LDX
LEAX
LCA

BEQ

ST
BGE
JSR
LLO
$TD
BRA
BGT
JSR
LDD
S1D
JSR
JSR
JSR
JSR
BEQ
JSR
LLD
STD
JSR
JSR
JSR
BEQ
LDD
STD
LCA
STA
LED
STD
JSR
LED
$1D

LCD -

STD
LDA
STA
BRA
END

x01
TMPZ
#1253¢8
9,X%

s X

X03
TMP3
X05
NEWVEC
vourT
TeX
X0
X06
RNDVEC
vour
TsX
ANTISH
NEWLOC
REALCO
CKMQV
X09
RNDVEC
VCUT
TsX
NEWLCC
REALCC
OKMOV
Xg9
brX
RLOC
6,X
RBIT
1%
PSCR
WRTSHP
PSCR
1,X
RLOC
4eX
REBIT
6,X
X04

Unatron documentation

page 23

	1-unatron-intro
	2-unatron-ch1-graphics
	3-unatron-ch2-characters
	4-unatron-ch3-animation
	5-unatron-ch4-data
	6-unatron-ch5-modifications
	7-unatron-appxA-shapenums
	8-unatron-appxB-overlays
	9-unatron-appxC-sampleprog
	10-unatron-src-part1
	11-unatron-src-part1
	12-unatron-src-part2

